WORK IN PROGRESS

This is a demo of the LLL algorithm. You can check the debug box to step through the algorithm to see exactly how LLL works.
Set \(k=2\).
While \(k\leq n\)
    For \(j\) from \(k-1\) down to \(1\)
        Set \(\vec{v}_k=\vec{v}_k-\lfloor \mu_{k,j} \rceil \vec{v}_j\)
    EndFor
    If \( \|\vec{v}_k^*\|^2\geq (\delta-\mu_{k,k-1}^2)\|v_{k-1}^*\|^2 \):
        Set \(k=k+1\)
    Else
        Swap \(\vec{v}_k\) and \(\vec{v}_{k-1}\)
        Set \(k=\max(k-1,2)\)
    EndIf
EndWhile
Output LLL-reduced basis \(\{\vec{v}_1,\cdots ,\vec{v}_n\}\)
Orthogonality Defect:
Number of lattice points rendered per direction:


LLL \(\delta\):
k=; Current step:
Gram-Schmidt Coefficient Matrix: