
Towards Precise Reporting of
Cryptographic Misuses

Yikang Chen∗, Yibo Liu†, Ka Lok Wu∗, Duc V. Le‡, Sze Yiu Chau∗
∗The Chinese University of Hong Kong †Arizona State University ‡Visa Research

{ykchen, wkl021, sychau}@ie.cuhk.edu.hk yiboliu@asu.edu levduc112@gmail.com

Abstract—In the last decade, a series of papers were published
on using static analysis to detect cryptographic API misuse. In
each paper, apps are checked against a set of rules to see if
violations exist. A common theme among these papers is that
rule violations are plentiful, often at the scale of thousands.
Interestingly, while much effort went into tackling false negatives,
curiously, not much has been said on (1) whether the misuse
alarms are indeed correct and meaningful, and (2) what can
future work improve upon apart from finding more misuses.

In this paper, we take a deep dive into the rule violations
reported by various academic papers as well as the rules, models
and implementations of their detectors, in an attempt to (1)
explain the gap between their misuse alarms and actual vulner-
abilities, and (2) shed light on possible directions for improving
the precision and usability of misuse detectors. Results of our
analysis suggest that the small-scale inspections done by previous
work had some unfortunate blind-spots, leaving problems in their
rules, models, and implementations unnoticed, which in turn led
to unnecessary overestimation of misuses (and vulnerabilities). To
facilitate future research on the topic, we distill these avoidable
false alarms into high-level patterns that capture their root
causes, and discuss design, evaluation and reporting strategies
that can improve the precision of misuse findings. Furthermore, to
demonstrate the generalizability of these false alarm patterns and
improvement directions, we also investigate a popular industry
detector and a dynamic detector, and discuss how some of the
false alarm patterns do and do not apply to them. Our findings
suggest that the problem of precisely reporting cryptographic
misuses still has much room for future work to improve upon.

I. INTRODUCTION

As cryptography plays an indispensable role in securing
contemporary systems, many research efforts went into an-
alyzing both the implementation and usage of cryptography.
Specifically, a long line of work has been dedicated to the prob-
lem of designing and implementing detectors that can catch
misuses of cryptographic APIs in various applications [1]–[9].
Common examples of misuses that are caught and reported
include the invocation of algorithms perceived to be weak
(e.g., AES-ECB), as well as the use of constants (e.g., keys
and passwords) and weak parameters (e.g., short key lengths).
While previous works did an excellent job in discovering
many potentially severe findings, curious questions remain on
whether the misuse alarms are indeed correct and actionable

to developers, and what are the areas that future work can im-
prove upon besides competing to find more potential misuses.

Problem. In this paper, we focus on the problem of false
alarms from static cryptographic misuse detectors. Existing
research suggests a high false positive rate in bug detection
tools can lead to developers resisting tool adoption [10], [11].
Interestingly, while previous work investigated the problem of
false negatives in detecting cryptographic misuse [8], currently
there is no independent study of false alarms. Thus in this
paper, we take a technical deep dive into the problem of
false alarms in cryptographic misuse detectors, and discuss
their root causes as well as possible ways of addressing them.
The main objectives of this paper are to present a more
nuanced and balanced account of what counts as misuses (and
vulnerabilities), investigate why developers write code that
detectors consider as misuses, and identify possible improve-
ment directions (IDs) in terms of improving the precision and
usability of cryptographic misuse detectors in general.

Scope and methodology. We select 3 recent papers based on
static analysis that have publicly released their detectors [1]–
[3], which constitute the current state-of-the-art academic
efforts on using static analysis to detect cryptographic misuses.
Isolating false alarms from a corpus of misuse reports is
challenging, since no single detector achieves perfect recall
and precision, and there is no misuse oracle that can program-
matically decide if a misuse report is a false alarm. Thus, to
shed light on the problem of false alarms, we adopt a 2-phase
approach in our analysis. First, we manually sample misuse
reports that are either (i) frequently occurring or (ii) likely
to be false alarms, and perform root-cause analysis on them.
This allows us to demonstrate the existence of false alarms, and
distill high-level patterns of their root causes. Then, for some
false alarms with root causes that can be corrected, we refine
and rerun the detectors to estimate their overall spread and
scale beyond our manual samples. Furthermore, to demonstrate
the generalizability of the root-cause patterns and IDs, we also
investigate a popular open-source industry static detector [12]
and an academic dynamic detector [7], and discuss how some
of the false alarm patterns do and do not apply to them.

Findings. Interestingly, we find that many misuse alarms
might not be very actionable to developers, and that previous
works might have overestimated the number of misuses and
vulnerabilities. For example, a noticeable portion of constant
keys and passwords reported by two academic detectors are
actually false positives caused by implementation bugs. We

Majority of the work was conducted while the authors were respectively at
The Chinese University of Hong Kong† and the University of Bern‡.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.241032
www.ndss-symposium.org

find this situation alarming, as a more precise tool that reports
less false alarms might appear outperformed by these existing
tools. Furthermore, despite the best intentions of helping de-
velopers, certain misuse rules and their models capture neither
sufficient conditions nor necessary conditions of cryptographic
vulnerabilities, and thus the resulting alarms might not be able
to really help developers write more secure code.

Root causes. Although static analysis is not expected to be
perfect, our results suggest that false alarms in detecting cryp-
tographic misuse can occur not only due to classic challenges,
but also because of ① overly conservative misuse rules, ②
imprecise modeling, and ③ implementation bugs in detectors
themselves. The false alarm patterns due to ① likely also apply
to other papers (e.g., [4], [6], [7], [9]) and industrial tools not
considered by this work, as they share similar misuse rules.

False alarms due to ③ highlight the need to improve eval-
uation of detectors to avoid blind-spots, whereas false alarms
caused by ① and ② reflect the fallacy of the converse. That is,
the usage rules and their models are sometimes not designed
to capture sufficient conditions of vulnerabilities. As will be
explained later, one major contributor to this sufficiency gap is
the context of usage. While an API method (e.g., AES-ECB)
might be insecure in a certain context (e.g., direct encryption
of sensitive payloads), usage of the same method in a different
context might be acceptable (e.g., implementing other secure
AES modes such as GCM) or mandatory by standards (e.g.,
Adobe PDF [13]). To clarify, the point of this paper is not
to promote the use of API methods that are deprecated due to
known weaknesses. However, directly reporting all API calls to
such methods as misuses or vulnerabilities without considering
the context of usage, leads to many false alarms and might not
be the most constructive approach.

Additionally, we found the differences in idiosyncrasies
(e.g., API behaviors and default values) on different Java
platforms (e.g., Android) to be another contributor to the
sufficiency gap. Interestingly, previous work often directly
apply detectors designed for conventional Java on Android
apps [1], [2], thus misjudging many apps and underestimating
the resulting false alarms. This shows that the subtleties of
Android warrant a careful and fine-grained custom handling.

Contributions. In summary, this paper makes the following
technical contributions:

1) We revisit academic static detectors of cryptographic
API misuse, and demonstrate with empirical evidence
that, despite the precision implied by the correspond-
ing papers, many false alarms exist. This suggests
there is much room for improvement in terms of pre-
cisely detecting and reporting cryptographic misuses.

2) For a subset of modeling and implementation issues,
we refine the detectors to estimate the scale of their
resulting false alarms in the data set. We include
the refined versions in our publicly released artifacts,
which could be useful to other studies.

3) Based on the false alarms observed, we distill high-
level root-cause patterns, and discuss the challenges
as well as possible improvements in making misuse
detectors more usable to developers.

4) Based on false positives found in actual app code, we
prepared a collection of minimal working examples

(MWEs) that can illustrate problems in existing de-
tectors. To facilitate future research, these MWEs are
also included in our publicly released artifacts.

II. RELATED WORK

Cryptographic API misuse detection. Researchers have put
much effort into detecting cryptographic API misuse over the
past decade. MalloDroid [14] extended Androguard [15] to
perform static analysis for SSL/TLS related API in Android
applications. Another static analysis tool based on Androguard,
CryptoLint [4], further implemented six common rules of cryp-
tographic API usage for Android applications. CryptoREX [3]
applied the same six rules in the context of IoT firmware and
reported the prevalence of cryptographic misuses in firmware
images based on their static taint analysis. More recently,
CogniCryptSAST [2] and CryptoGuard [1] have been created
for detecting cryptographic API misuse in Java and Android
applications. Both tools are stated as flow-, context- and field-
sensitive, and they both consider a larger rule set than the
likes of CryptoLint and CryptoREX. In contrast, Crylogger [7],
another recent effort, uses a dynamic analysis to log the usage
of cryptographic APIs in Android applications and detect vio-
lations by analyzing the log. Crylogger is positioned as a tool
that complements other static tools such as CryptoGuard [7].
Apart from devising detectors, researchers have also prepared
two benchmarks, CryptoAPI-Bench [16] and CamBench [17].
Both benchmarks only contain manually crafted examples that
lack the intricacies of real-world applications code, and thus
their corresponding evaluations did not discover many of the
false alarms found in this paper.

Meta-studies. In the literature, meta-studies were conducted
on topics including fuzzing [18], Website fingerprinting at-
tacks [19] and defenses [20], smart contract vulnerabilities [21]
and analysis tools [22], and Android taint-analysis [23]. Back
in 2013, [10] conducted a user study to investigate why devel-
opers are not widely adopting static analysis tools. The study
concluded that a large volume of false alarms significantly
reduces developers’ tool acceptance. For general API misuse
detectors based on static analysis, a prior work [24] performed
an empirical evaluation based on 90 real-world misuses and 10
hand-crafted misuses, and found that all detectors suffer from
low precision and recall in real-world applications. Another
prior work [25] focuses on static vulnerability detectors for C
code, and found that false negatives could be quite prevalent
in realistic settings. On the problem of cryptographic API
misuse, a recent work used mutators to investigate the problem
of false negatives [8]. Concerning false positives, the most
relevant works include the manual investigation [26] done on
the alarms from CogniCryptSAST , as well a small-scale user
study presented in [27], where developers reportedly rejected
some of the pull requests, citing acceptable usage in non-
security-critical context. Comparing to these prior work, this
paper presents an in-depth technical investigation that covers
more detectors, reveals more false alarm patterns, and provides
more concrete improvement directions.

III. OVERVIEW OF THE DETECTORS

For this study, we consider three representative papers from
the literature that publicly released their detectors, i.e., Cryp-
toGuard [1], CogniCryptSAST [2], and CryptoREX [3] Both

2

TABLE I. MISUSE RULES FROM CRYPTOGUARD

Rule 1: Do not use predictable/constant cryptographic keys.
Rule 2: Do not use predictable/constant passwords for PBE.
Rule 3: Do not use predictable/constant passwords for KeyStore.
Rule 4: Do not use custom Hostname verifiers to accept all hosts.
Rule 5: Do not use custom TrustManager to trust all certificates.
Rule 6: Do not use custom SSLSocketFactory without manual Hostname verification.
Rule 7: Do not use HTTP.
Rule 8: Do not use predictable/constant PRNG seeds.
Rule 9: Do not use cryptographically insecure PRNGs (e.g., java.util.Random).
Rule 10: Do not use static Salts in PBE.
Rule 11: Do not use ECB mode in symmetric ciphers.
Rule 12: Do not use static IVs in CBC mode symmetric ciphers.
Rule 13: Do not use fewer than 1,000 iterations for PBE.
Rule 14: Do not use 64-bit block ciphers (e.g., DES, IDEA, Blowfish, RC4, RC2).
Rule 15: Do not use insecure asymmetric ciphers (e.g, RSA, ECC).
Rule 16: Do not use insecure cryptographic hash (e.g., SHA1, MD5, MD4, MD2).

CryptoGuard and CogniCryptSAST target Java applications,
while CryptoREX targets binaries. CryptoLint [4], one of the
seminal work on detecting cryptographic API misuses, first
defined six misuse rules. Subsequent papers often adopt these
same rules, and might expand on the rule set to cover more
potential misuses. Each misuse rule can either be modeled as
a blacklist or a whitelist.

CryptoGuard. As summarized in Table I, CryptoGuard checks
16 rules. Some rules are quite similar to that of CryptoLint, but
CryptoGuard targets more classes in the Java API. According
to the CryptoGuard paper, their rules correspond to 5 types
of attacks: rules 1-3 cover predictable secrets, rules 4-7 cover
man-in-the-middle (MITM), rules 8-9 cover predictability at-
tacks, rules 10-12 cover chosen-plaintext attacks, and rules 13-
16 cover brute-force attacks. Under the hood, CryptoGuard
performs an on-demand data flow analysis based on the Soot
framework [28]. It implements forward and backward slicing
in a flow-, context- and field-sensitive manner, and targets
specific parameters used by certain classes of the Java API
as the slicing criteria. It traces def-use relations among intra-
procedural program statements, and the inter-procedural caller-
callee relations across different methods.

CogniCryptSAST with CrySL. CrySL is a domain specific
language (DSL) for expressing the misuse rules to be checked
by CogniCryptSAST . CrySL captures the expected usage pat-
terns defined for 49 Java classes, which cover 7 error types
that represent different cryptographic misuses to be reported, as
shown in Table II. For example, a Java object of a certain class
may be incorrectly used without first calling its initilize()

method, resulting in a TypestateError. For ease of discussion,
we only consider the 11 Java classes that share similarity with
the high-level rules of CryptoGuard.

Each CrySL rule is modeled in CogniCryptSAST as a finite-
state machine, which integrates IDEal [29], a flow-, field-, and
context-sensitive typestate [30] analysis that models the call
sequence of API methods from the corresponding Java classes.
CogniCryptSAST also extends Boomerang [31], an on-demand
pointer analysis, for tracking specific objects or values in a call
sequence. In the rest of this paper, we use CogniCryptSAST to
refer to the tool and the CrySL rules it uses as a whole. The
techniques used in CogniCryptSAST are more complex than
that of CryptoGuard, though the CryptoGuard paper claims it
outperforms CogniCryptSAST in terms of precision and recall
on its benchmark [1].

CryptoREX. Comparing to the likes of CryptoGuard and
CogniCryptSAST , CryptoREX has a relatively simpler design.

TABLE II. ERROR TYPES IN COGNICRYPTSAST

Error Types# Description
HardCodedError (H) object has hardcoded value
ForbiddenMethodError (F) object calls a forbidden method
RequiredPredicateError (R) object has a required predicate not satisfied
TypestateError (T) object typestate not following an expected sequence of events
ConstraintError (C) object uses a value that is not allowed
IncompleteOperationError (I) object does not have an expected event
NeverTypeOfError (N) object is of a forbidden type

TABLE III. MISUSE RULES FROM CRYPTOREX

Rule 1: Don not use electronic code book (ECB) mode for encryption
Rule 2: Do not use a non-random initialization vector (IV) for ciphertext block chaining (CBC) encryption
Rule 3: Do not use constant encryption keys
Rule 4: Do not use constant salts for password-based encryption (PBE)
Rule 5: Do not use fewer than 1000 iterations for PBE
Rule 6: Do not use static seeds for random number generation (RNG) functions

As shown in Table III, CryptoREX checks 6 misuse rules that
firmware developers should conform to, which are basically
adopted from that of CryptoLint. To detect violation of those
rules, CryptoREX executes a backward slicing to determine
(i) whether certain functions of interests are being called, and
(ii) whether some parameters of a particular function call will
be set to constant values. Specifically, CryptoREX traverses all
backward paths from each call site of a cryptographic function
of interests, in an attempt to compute all possible values of
the specific parameters. Apart from this, CryptoREX also uses
the nm -D <filename> command to check whether PRNG
functions rand and srand are imported by a binary, as a part
of its rule 6. In CryptoREX, the list of functions and parameters
that are of interests can be described in a configurable manner,
which by default uses a list made of 107 functions from 7
popular cryptographic libraries.

IV. METHODOLOGY

In this paper, we consider 2 types of false alarms: False
Positives (FPs) and Ineffectual True Positives (ITPs). FPs refer
to false alarms caused by bugs and other limitations of the
static analysis implemented in a detector. In contrast, ITPs
are considered true positives from the perspective of program
analysis, where a misuse detector detected patterns that it is
designed to detect, albeit what it detects might not always help
developers (i.e., ineffectual), due to the design of their misuse
rules and models.

To test the detectors targeting Java (i.e., CryptoGuard and
CogniCryptSAST), we run them on a data set of 3489 open-
source Android apps collected from F-Droid [32]. Choosing
F-Droid over Google Play has the advantage of being able
to see the non-obfuscated source code, making it easier for
us to understand the context of certain reported misuses. For
CryptoREX, we attempted to download 1437 firmware images
(1 version per product), and successfully collected 1177 from
6 vendors (Netgear: 573, D-link: 469, Linksys: 52, Zyxel: 46, TP-
Link: 33, Tomato: 4). We then run CryptoREX on them. In
our experiments, unless stated otherwise, we use CryptoGuard
(commit id 92551ee), CogniCryptSAST (commit id 1405ebd)
with its CrySL rule set (commit id 6d844ab), and CryptoREX
(commit id 3dc81c9).

We note that no false-alarm oracles currently exist, and
differential testing [33] of misuse detectors is difficult, as they
have different targets, rules, and reports that are not directly
comparable. Thus, in this paper, we adopt a 2-phase approach
in our analysis. First, we sample and manually analyze some

3

misuses reported by the detectors, and determine the root
causes and nature of such reports. Then, for some false alarms,
we refine the detector models or implementations, and run the
detectors again to estimate their overall spread in the data set.

For manual analysis, given the sheer number of misuse
alarms and the labor intensity of root cause analysis, it is
not possible to cover all the misuses reported. To facilitate
our sampling, we merge misuse alarms of each rule based
on the reported misuse data (e.g., certain constant values),
together with the class and method names (CryptoGuard and
CogniCryptSAST), or the file, function names and addresses
(CryptoREX). This helps because many third-party libraries
are reused across apps and firmware, and most misuse alarms
are triggered by third-party library code [1], [34]. We then
rank the merged misuses by their occurrence in apps (and
firmware) after merging. Next, we inspect the top-10 offending
methods (functions), because they affect the most number of
apps (systems). Then, based on the values of misuse data, we
pick and inspect additional alarms that are likely to be false.
The root cause analysis for each detector is conducted inde-
pendently by one of the authors, and the analyzed results are
checked and discussed by the other authors. Then the author
prepares a representative minimal working example (MWE)
by debloating real-world code to demonstrate the existence
and root cause of a false positive found in a detector. An
overview of the total number of misuses reported and sampled
can be found in Appendix A-A. In the following sections, we
present the high-level false alarm patterns, grouped by their
root causes, with some representative examples. Appendix B
explains how to access our publicly released artifacts.

V. FALSE POSITIVES FROM STATIC ANALYSIS

We now present the false positives (FPs) observed in our
investigation. Here we mainly focus on the root causes and
improvement directions (IDs) that are not discussed in the
original papers. For instance, we observed 31 FPs due to
the depth of orthogonal slicing being 1, which is already
acknowledged in the CryptoGuard paper [1], and thus we do
not show the details here. Likewise, both CryptoGuard and
CogniCryptSAST [1], [2] explicitly acknowledged their path
insensitivity, so we skip discussing the corresponding FPs.

Pattern #1 – Broken def-use chains due to variable
reassignment (CryptoGuard). Rules 1–3, 8, 10, 12–13 of
CryptoGuard all involve finding constants by backward slicing,
which uses def-use relations to track variables of interest. In-
terestingly, we found that the backward slicing in CryptoGuard
erroneously assumes a variable in the Jimple intermediate
representation (IR) will only be assigned once, and thus the
slicing will sometimes add unrelated statements to its def-
use chains, discovering data flows that actually do not exist.
To illustrate this problem, we show a rule 3 FP example
in Listing 1. This is a typical way of loading a KeyStore
from a given input stream with a provided password (line
11). The KeyStore.getDefaultType() method (line 5)
returns a constant string jks, which is incorrectly detected
by CryptoGuard as a constant password. To see why this
happens, look at the Jimple IR of the loadAppKeyStore
method shown in Listing 2. The String variable $r2 is
first assigned the output of KeyStore.getDefaultType()
(line 7), and then later is reassigned to hold the pwd field of

testKeyStore (line 10). When CryptoGuard uses backward
slicing to track $r5 (line 12), it first adds the code on line
11 since $r5 is assigned the result of $r2.toCharArray().
Then the tracking continues by considering $r2. Line 10
is added to the def-use chain, and because the backward
slicing algorithm does not kill $r2 after this, it continues to
add line 7 as well. Hence, CryptoGuard sees a non-existent
data flow from KeyStore.getDefaultType() to pwd, thus
reports a rule 3 violation claiming jks is a constant password.
The corresponding simplified intra-procedural def-use chain
is shown in the Figure 1(a) with brown color, showing the
erroneous def-use relations from $r5 to jks.

The mistaken assumption would have been correct if the
Jimple intermediate representation (IR) generated by Soot is
in static single assignment (SSA) form [35], but in practice
it is not, and the same variable can be assigned multiple
times within a method. This problem can be refined by killing
off a variable once the nearest assignment has been found
by backward slicing, and keeping the union of used variable
sets at merge points after backward slicing traverses through
branches. This idea is illustrated in Figure 1(b). Keeping the
union of used variable sets at merge point of multiple branches
makes a safe refinement of CryptoGuard’s original def-use
chains. We implemented this refinement in CryptoGuard, rerun
it on the app data set, and found a large number of FPs for
rules 1–3, 8, 10, 12–13 caused by this same root cause, as
shown in Table IV. As such, we find this FP pattern particularly
important to explain and address, otherwise a new misuse
detector that does not exhibit the same FPs could appear
outperformed by CryptoGuard.

TABLE IV. CRYPTOGUARD: BROKEN DEF-USE FALSE POSITIVES

Rule Alarms FPs (%) Rule Alarms FPs (%)
1, 2* 972 599 (61.63%) 10 150 20 (13.33%)

3 364 118 (32.42%) 12 490 82 (16.73%)
8 105 13 (12.38%) 13 1510 1438 (95.23%)

* CryptoGuard combines these two into one type of alarm

1 public class testKeyStore {
2 private File keyStoreFile; private String pwd;

3 KeyStore loadAppKeyStore() throws Exception {
4 KeyStore ks;

5 ks = KeyStore.getInstance(KeyStore.getDefaultType());

6 ...

7 ins = new java.io.FileInputStream(keyStoreFile);

8 ks.load(ins, pwd.toCharArray()); // backward−slice 2nd param

9 return ks;

10 }
11 public void setKey(String pass) { this.pwd = pass; }
12 }

Listing 1. An FP example of Pattern #1

1 java.security.KeyStore loadAppKeyStore() {
2 testKeyStore r0; java.io.File $r1;
3 java.lang.String $r2; java.security.KeyStore $r3;
4 java.io.FileInputStream $r4; char[] $r5;
5 ...

6 r0 := @this: com.test.testKeyStore;

7 $r2 = staticinvoke <java.security.KeyStore: java.lang.String

getDefaultType()>();

8 $r3 = staticinvoke <java.security.KeyStore: java.security.

KeyStore getInstance(java.lang.String)>($r2);
9 ...

10 $r2 = r0.<com.test.testKeyStore: java.lang.String pwd>;

11 $r5 = virtualinvoke $r2.<java.lang.String: char[] toCharArray

()>();

4

12 virtualinvoke $r3.<java.security.KeyStore: void load(java.io.

InputStream,char[])>($r4, $r5);
13 ...

14 }

Listing 2. Jimple code of Listing 1

(a) (b)

Fig. 1. Simplified intra-procedural def-use chains
(a) shows the def-use chain of Listing 2 targeting $r5
(b) shows the def-use chain for explaining our safe refinement in CryptoGuard

Pattern #2 – Incorrect string matching in data flow analysis
(CryptoGuard). Another contributor to FPs in CryptoGuard
is the string matching logic used to implement data flow
analysis. Variable names, field names, and types of statements
are often processed and matched as strings. However, we found
that some of the string operations used in CryptoGuard do
not actually perform what is needed by the analysis. Such
problems can be classified into two cases: (a) mismatching
field names; and (b) mismatching array variables.

Problem (a) explains the gap on rule 13 alarms that we ob-
served between the latest stable release (commit id 92551ee)
and an older version of CryptoGuard (commit id 94135c5).
During our experiments, we noticed that the number of rule
13 alarms in our experiment is much larger than that of the
original paper (which reported only 312 alarms for rule 13).
The main difference between these two is that the latest stable
release uses a new version of Soot. After reviewing and debug-
ging the CryptoGuard code, we found that the gap in rule 13
alarms is caused by the problem of mismatching field names.
In general, to enable field-sensitive analysis, CryptoGuard
needs to match the field name (e.g., r0.<com.test.Crypto:
java.lang.String defaultKey>) in statements. However,
the regular expression used1 to match field names missed one
common case: some variable names in the Jimple IR may begin
with a dollar sign [36]. This bug led to many variables fail to
match fields, thus also failing the field slicing. With the new
version of Soot, less variable names are given the dollar sign
prefix, thus CryptoGuard performs its field slicing with more
success, which unfortunately outputs many more FPs due to the
broken def-use chains (Pattern #1). Fixing the def-use chains
mitigated these FPs when field slicing functions as expected.

For (b), CryptoGuard uses toString().contains()2 to
determine if the definition of an array variable matches any use
of array variables in def-use chains. However, this is a bug that
incorrectly expands the matching set. For example, r1 is also

1https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/
backward/method/MethodInstructionSlicer.java#L200

2https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/
backward/method/MethodInstructionSlicer.java#L179

a match for r10 under the contains matching logic, thus
some unrelated arrays will also be considered to have def-use
relations during slicing. In our experiments, we observed 23
FPs due to this string matching bug.

Pattern #3 – Incorrect detection of hard-coded arrays due to
a bug (CogniCryptSAST). To detect hard-coded passwords,
CogniCryptSAST defines a notHardCoded constraint for
password-related classes such as PBEKeySpec and KeyStore.
Interestingly, we found a bug in how CogniCryptSAST de-
termines if an array is hard-coded. Listing 3 shows an il-
lustrative FP example, where a KeyStore object uses the
return value of getPassword() as its password parameter
in KeyStore.load(). Notice that getPassword() uses
SecureRandom to generate a random char array as its
return value. Surprisingly, CogniCryptSAST reports this as
a hard-coded constant password. We manually analyze the
CogniCryptSAST code to locate the bug, the details of which
can be found in Appendix A-C. In our sampled data, we
observed 24 HardCodedError FPs in KeyStore, and 28 FPs in
PBEKeySpec due to this bug.

1 public void test() throws Exception {
2 KeyStore kS = KeyStore.getInstance(KeyStore.getDefaultType());

3 kS.load(null, getPassword());

4 }
5 public char[] getPassword() { // returns random char array

6 byte[] pass = new byte[256];

7 SecureRandom sR = new SecureRandom();

8 sR.nextBytes(pass);

9 return bytesToChars(pass);

10 }

Listing 3. An FP example of Pattern #3

Pattern #4 – Incorrect handling of call-return edges of CFG
(CryptoREX). Although CryptoREX is based on angr [37],
it develops its own CFG recovery algorithms instead of using
that of angr. In short, CryptoREX sets up the call-return edges
of a CFG, while angr sets up the call edges and return edges.
The problem is that CryptoREX does not properly handle the
call-return edges, i.e., all function calls are ignored by Cryp-
toREX during backward slicing. However, the side effect of
function calls are still captured by CryptoREX, i.e., parameters
of function calls are stored in registers and stacks. Given
that function calls are ignored but instructions for passing
parameters are processed, CryptoREX is prone to anomalous
results. An illustrative example can be found in Listing 4.
In the decompiled code, variable v1 (register r0) holds the
return value of function sub_464F40, which is obviously not a
constant value. However, CryptoREX incorrectly reports a rule
6 alarm, as it mistakes 4096 as the seed, which was passed to
function sub_5A7D4 as parameter a1 via register r0 on line
3. Through sampling, we observed that this bug led 1 FP for
rule 3, 28 FPs for rule 4, and 113 FPs for rule 6.

1 int __fastcall sub_5E3D0(_DWORD ∗a1) {
2 ...

3 ∗(_WORD ∗)(v11 + 4) = sub_5A7D4(4096);

4 ...

5 }
6 __int64 sub_464F0() {
7 struct timeval tv; // [sp+0h] [bp−14h] BYREF

8 gettimeofday(&tv, 0);

9 return tv.tv_usec / 1000 + 1000LL ∗ tv.tv_sec;

10 }
11 int __fastcall sub_5A7D4(int a1) {
12 unsigned int v1; // register r0

5

https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/backward/method/MethodInstructionSlicer.java#L200
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/backward/method/MethodInstructionSlicer.java#L200
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/backward/method/MethodInstructionSlicer.java#L179
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/backward/method/MethodInstructionSlicer.java#L179

13 if (byte_ADCEC != 1) {
14 v1 = sub_464F0(); srand(v1); byte_ADCEC = 1;

15 }
16 ...

17 }

Listing 4. An FP example of CryptoREX’s Rule 6

ID #1: To implement effective and precise analysis,
idiosyncrasies of the IR need to be carefully considered.
Detectors also need thorough testing and evaluation, based
on real-world datasets with sufficient sample size, to catch
their own bugs. Although the bugs presented here are spe-
cific to individual detectors, this ID is generally applicable
to future crypto-misuse detectors as well as vulnerability
detectors in a more general setting.

Pattern #5 – Static typing information available but
underutilized (CogniCryptSAST). We found that some of
the TypestateError and IncompleteOperationError alarms reported
by CogniCryptSAST are caused by unresolved but statically
resolvable polymorphism in typestate analysis. In Java, poly-
morphism can happen due to the use of abstract classes,
inheritances, generics and interfaces. While it is impractical
to expect static analysis to perfectly handle all polymorphism,
however, some polymorphism can be resolved by utilizing
static typing information available in the IR. However, in its
typestate analysis, CogniCryptSAST adopts Class Hierarchy
Analysis (CHA) for its call graph construction, which includes
all classes that implement the same interface, even when the
instantiated class (static type) is already given in the IR. Sim-
ilar problems also exist for generics. This imprecision of call
graphs caused many false positives. Due to space constraints,
we provide an illustrative example in Appendix A-D. In our
experiment, we found at least 34 FPs for TypestateError and 80
FPs for IncompleteOperationError because of this.

ID #2: We recommend using a more precise call graph
construction algorithm with reasonable overhead to reduce
false positives. There are other call graph construction
algorithms, such as Rapid Type Analysis (RTA) [38] and
Variable Type Analysis (VTA) [39], which scale linearly
to the number of callsites and can better utilize static
typing information. In terms of empirical performance,
experiments from prior work suggest the runtime overhead
of VTA and RTA can be comparable to that of CHA [38],
[40], though the implementation framework of choice can
also significantly influence the observed overhead [40].

VI. FALSE ALARMS DUE TO MODELING

We now present the ITPs due to modeling issues in
detectors, where the misuse rules themselves are reasonable.
Unfortunately, false alarms can happen when the models are
not designed to capture sufficient conditions of vulnerabilities.

Pattern #6 – Reasonable iteration counts considered insecure
(CogniCryptSAST). Interestingly, CogniCryptSAST requires
the PBE iteration count to be at least 10000 in its PBEKeySpec
and PBEParameterSpec rules. However, the acceptable lower
bound3 should actually be 1000 [1], [42]. We found 22

3Although the minimum iteration count is likely to increase in near
future [41], here we are following the minimum requirements applicable back
when the original papers were published.

ConstraintError in PBEKeySpec (and 2 in PBEParameterSpec)
to be false alarms because of this.

Pattern #7 – Reasonable key sizes considered insecure
(CryptoGuard). Rule 15 of CryptoGuard detects insecure
(short) key sizes of public-keys (e.g., 1024-bit RSA). In Cryp-
toGuard, this rule is checked in three steps: (1) find the creation
of java.security.KeyPairGenerator for RSA or elliptic
curve (EC); (2) use intra-procedural forward slicing to find
whether each KeyPairGenerator object has its initialize
method explicitly invoked to set the key size (if not, the default
key sizes of RSA and EC are regarded as violations); (3)
if initialize is explicitly called, use backward slicing to
determine whether the algorithm and key size to be set are
appropriate (CryptoGuard cited [43] for the lower bounds on
key sizes). While the steps might seem reasonable, there are
several subtle problems.

CryptoGuard requires RSA keys to be at least 2048-bit
long, which approximates to 112-bit security [43] and is a
reasonable lower bound. However, CryptoGuard requires EC
keys to be at least 512-bit long, which is at a much higher
security level (roughly equivalent to 15360-bit RSA) [43].
This means generating a 256-bit key for ED25519 or a 384-
bit key for ECDSA-384 are all reported as vulnerabilities by
CryptoGuard. Overall, we found 53.3% (16/30) of all the rule
15 alarms are ITPs because of this.

Furthermore, we tested Android versions 6 to 13 (API
levels 23 – 33), and found that the default key sizes for RSA
and EC are 2048-bit and 256-bit respectively, which means
even the default key sizes for RSA and EC on Android are
acceptable by current standard [43]. Thus, equating default
key sizes with vulnerabilities, as done by CryptoGuard, could
lead to additional false alarms when analyzing apps targeting
API levels 23 or above.

ID #3: Future detectors should justify their adopted lower
bounds for different cryptographic algorithms by clearly
citing the standards/recommendations of the time. Addi-
tionally, detectors can also consider reporting the reference
documents together with the corresponding alarms, which
can help developers evaluate the severity without introduc-
ing false negatives. This ID can be applied to any future
cryptographic misuse detectors.

Pattern #8 – No key-pair generator equals to insecure public
key (CryptoGuard). We found 8 additional rule 15 false
alarms from CryptoGuard due to exception handling, a rep-
resentative example of which can be found in the JJWT
library4. In CryptoGuard, slicing is performed based on a
directed graph (representing a method body) generated by
Soot. A method may have more than one exit statement
(e.g., throw, return). However, CryptoGuard always takes
the final statement in the directed graph as the slicing
result for the entire method. In the context of rule 15,
a method could catch the NoSuchAlgorithmException
from KeyPairGenerator.getInstance(), and then exit.
Notice that when NoSuchAlgorithmException is thrown,
no valid KeyPairGenerator objects would be created
by getInstance(), and thus no initialize() or

4https://github.com/jwtk/jjwt/blob/f6aa291e/impl/src/main/java/io/jsonwebtoken/impl/
crypto/RsaProvider.java#L186

6

https://github.com/jwtk/jjwt/blob/f6aa291e/impl/src/main/java/io/jsonwebtoken/impl/crypto/RsaProvider.java#L186
https://github.com/jwtk/jjwt/blob/f6aa291e/impl/src/main/java/io/jsonwebtoken/impl/crypto/RsaProvider.java#L186

genKeyPair() would be possible. In that case, reporting
insecure public key leads to false alarms, because there is no
generator to begin with, and no keys could be generated.

ID #4: To track whether an object indeed invokes a specific
method, backward slicing should consider all branches,
including normal return exits and thrown exceptions, and
if the target object is not created due to exception from
methods like getInstance(), a misuse alarm is not
necessary. Notice that this only removes the cases when
no KeyPairGenerator object is initiated due to the
exception, and thus will not introduce false negatives.
Although we observed false alarms from CryptoGuard,
exception branching leading to non-existent objects is a
general pattern faced by static vulnerability detectors in
other settings as well.

Pattern #9 – Constant seeds assumed to always make outputs
of SecureRandom predictable (CryptoGuard). Rule 8 of
CryptoGuard concerns the use of constant seed with the
java.security.SecureRandom class. While the intention
is reasonable, however, whether constant seeds pose a security
threat (lead to predictable PRNG outputs) depends upon sev-
eral nuanced factors, including the target platform, API call
sequence, and choice of PRNG implementation.

According to the API documentation [44], [45], once
an instance of SecureRandom is already properly seeded
(e.g., the self-seeding induced by calling nextBytes() before
setSeed()), subsequent calls to the setSeed() method
supplements rather than replaces the existing seed, and thus
do not pose a security threat even if constant seeds are used.

Furthermore, even if an instance of SecureRandom has
not been seeded before, the choice of PRNG implementation
also affects whether a given constant seed leads to the same
PRNG outputs. For example, on typical Unix-like systems that
are equipped with /dev/random or /dev/urandom, with the
default Sun provider, variants of NativePRNG are available
and used by default [46]. When a NativePRNG variant is used,
the seed given will not be the sole source of randomness that
SecureRandom relies upon. In such cases, even if a constant
seed is used, the PRNG outputs are still random. Neverthe-
less, on typical non-Android Java environments, using the
SHA1PRNG or DRBG implementations instead of NativePRNG
could lead to the same outputs when constant seeds are set via
setSeed() prior to self-seeding.

Things are a little different and confusing on Android, how-
ever. Since version 4.2, the SecureRandom class defaults to an
OpenSSL PRNG implementation from the AndroidOpenSSL
(a.k.a Conscrypt) provider, where a given seed is always used
as a supplement and not the sole randomness relied by the
PRNG, and thus even constant seeds will not lead to the
same PRNG outputs [47]. However, later it was found that the
OpenSSL PRNG implementation on Android versions below
4.4 had a bug, and thus applications that directly invoke
an instance of OpenSSL PRNG should explicitly initialize
it with entropy from /dev/urandom or /dev/random to
work around the bug [48]. On Android 6 or above, when the
provider is not specified, it defaults to Conscrypt, in which
SHA1PRNG is simply an alias of OpenSSL PRNG. The Bouncy
Castle-based Crypto provider that provides the old SHA1PRNG

implementation (which gives the same outputs under a constant
seed) has been deprecated in Android 7 [49]. However, for
apps targeting Android 6 or below, one can still request
the old SHA1PRNG by specifying the Crypto provider [49].
Table V below summarizes the behavior of SecureRandom
under different implementation on various target platforms.

TABLE V. IMPACT OF CONSTANT SEEDS ON SECURERANDOM UNDER
DIFFERENT IMPLEMENTATIONS ON VARIOUS PLATFORMS

Java App Target PRNG Implementation SecureRandom behavior with constant seeds

Android ≤ 4.1 Default
= SHA1PRNG same outputs if not properly seeded before [45], [47]

Android 4.1 OpenSSL PRNG random outputs [47] (but has a bug [48])

Android 4.2 & 4.3 Default
= OpenSSL PRNG [47] random outputs [47] (but has a bug [48])

Android ≥ 4.4 Default
= OpenSSL PRNG [47] random outputs [47]

Android ≤ 6 SHA1PRNG (Crypto) same outputs if not properly seeded before [45], [47], [49]

Android ≥ 6 SHA1PRNG (Conscrypt)
= OpenSSL PRNG [49] random outputs [47], [49]

Unix-like Default depends on configuration [46] (same as one of the below)
Unix-like variants of NativePRNG random outputs
Unix-like SHA1PRNG / DRBG same outputs if not properly seeded before [44]

In our experiments, we found that CryptoGuard reported
81 apps to have rule 8 violations. To estimate a lower bound
of false alarms, we used the minSdkVersion declared in
app manifests [50] to detect obvious cases of rule 8 false
alarms. With this, we found that 15 of the 81 apps have
a minSdkVersion of Android 75 or above, where constant
seeds never induce predictable outputs. More false alarms
might exist due to specific choices of PRNG implementation
as well as API call sequences that induce self-seeding.

ID #5: The effect of constant seeds varies due to several
factors. Future detectors can utilize the target platform
information (e.g., from the Android app manifest) and
target specific vulnerable API call sequences. Additionally,
detectors can also consider presenting its alarms with labels
of high-confidence. For instance, if a rule and its model
capture sufficient conditions of a vulnerability (in this
case, vulnerable API call sequences on specific platform-
implementation combinations), then the misuse alarm can
be given a high-confidence label. The other potential mis-
uses (e.g., other constant seeds) can then be reported with-
out that label. This can help developers prioritize misuse
alarms without introducing false negatives. This ID can be
applied to any static or dynamic misuse detectors, as well as
the remaining false alarm patterns discussed in this paper.

Pattern #10 – Narrow whitelist constraints in detecting MITM
issues (CryptoGuard). Rules 4–6 of CryptoGuard catch
misuses that open door to MITM attacks by checking if
the implementation complies with some predefined whitelist
constraints. However, we find the whitelists overly narrow,
leading to false alarms.

Rule 4 catches hostname verifiers that accept all hosts.
Specifically, its whitelist pattern requires any classes im-
plementing the HostnameVerifier interface to have a
verify() method where the SSLSession parameter influ-
ences the return value through def-use relations. However, we
note that SSLSession can exert its influence via control flow
instead of def-use relations. A typical ITP pattern of this can
be found in Listing 5. The return value is either true or

5We note that Android 7 was released back in 2016, and thus this is not
unfair to a detector released in 2019.

7

false, and it does not have any def-use relations with other
statements. Nonetheless, the session parameter influences the
return value via the if statement. We found 7 false alarms
that follow this pattern in our sampling exercise.

1 public class Verifier implements HostnameVerifier {
2 ...

3 @Override

4 public boolean verify(String hname, SSLSession session) {
5 HostnameVerifier dHNV = HttpsURLConnection.

getDefaultHostnameVerifier();

6 if (dHNV.verify(hname, session)) { return true; }
7 return false;

8 }
9 }

Listing 5. A false alarm example of CryptoGuard’s rule 4

Rule 5 detects custom TrustManager that accepts
all certificates. The X509TrustManager interface has
three methods to implement: checkClientTrusted,
checkServerTrusted, and getAcceptedIssuers. In
CryptoGuard, rule 5 is made of 3 subrules [1], which we
refer to as rule 5-1, 5-2, and 5-3. Violating any of the 3
subrules would lead to an alarm. Rule 5-2 is a blacklist rule
that detects unpinned self-signed certificate with an expiration
check, but it does not raise any alarms due to a bug, which
is a false negative that will be discussed further in Section X.
Here we focus on rule 5-1 and 5-3.

Rule 5-1’s model requires the CertificateException
to be thrown by both the checkClientTrusted() method
and the checkServerTrusted() method. This is at odds
with the original CryptoGuard paper [1], which only mentions
checking checkServerTrusted(), but the detector actually
reports an alarm when any of checkClientTrusted() and
checkServerTrusted() never throw the expected excep-
tion. Because of this, we found many ITPs concerning dummy
checkClientTrusted() methods, which is common in typi-
cal TLS deployments where only one-way certificate validation
(client validating server certificate) is needed.

In an attempt to gauge the scale of rule 5-1 false
alarms, we modified CryptoGuard to output different alarms
for checkClientTrusted() and checkServerTrusted().
During this exercise, we found another implementation bug6

that makes the checkServerTrusted() method never get-
ting checked. Because CryptoGuard uses a Map to hold the
slicing criteria, the rule 5-2 criteria actually overwrites that of
rule 5-1 due to a duplicate key, thus the exception check for
checkServerTrusted() never happens. Thus, all rule 5-1
alarms are caused by checkClientTrusted() alone.

Rule 5-3’s model requires the getAcceptedIssuers()
method of a custom X509TrustManager implementation to
call and return the getAcceptedIssuers() method of a
built-in instance of X509TrustManager. However, this cap-
tures neither a sufficient nor a necessary condition of the target
vulnerability (i.e., accepting all certificates):

Case 1: even if the custom getAcceptedIssuers()
method returns null or returns an empty array, the cus-
tom checkServerTrusted() method, which actually de-
termines the trustworthiness of the server certificate, can

6https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/rule/
CustomTrustManagerFinder.java#L40

still implement proper certificate validation without calling
the custom getAcceptedIssuers(), by either (i) load-
ing trusted CA certificates directly from KeyStore, or
(ii) pinning specific issuer certificates directly in its code,
or (iii) calling methods (e.g., getAcceptedIssuers() or
checkServerTrusted()) of a built-in X509TrustManager.
Options (i) and (ii) can also be implemented in the custom
getAcceptedIssuers(), but would still violate rule 5-3.

Case 2: even if the custom getAcceptedIssuers()
method invokes and returns the getAcceptedIssuers() of
a built-in X509TrustManager (thus satisfying the rule 5-
3 whitelist), the custom checkServerTrusted() can still
blindly accepts any certificates.

We found that all 125 rule 5-3 violations we sampled are
false alarms due to the aforementioned Case 1.

1 SSLSocketFactory fac = (SSLSocketFactory) SSLSocketFactory.

getDefault();

2 SSLSocket so = (SSLSocket) fac.createSocket("g.co", 443);

3 HostnameVerifier ver = HttpsURLConnection.

getDefaultHostnameVerifier();

4 if(!ver.verify(so.getSession().getPeerHost(), so.getSession()))

5 { threw CertificateException("Hostname mismatch!"); }

Listing 6. Sample code that satisfies rule 6 whitelist pattern

Rule 6 defines a whitelist constraint of hostname veri-
fication for SSLSocket. Listing 6 shows an example that
complies with this constraint: after creating an SSLSocket
object through the createSocket() method, the verify()
method of a HostnameVerifier object must be invoked, with
the second parameter being the SSLSession derived from
the SSLSocket object, and the return value of verify()
must be used in the condition of an if statement. However,
false alarms can happen due to various reasons: (1) there
are other ways to enable hostname verification; (2) server
identity can be confirmed without checking hostname (e.g.,
by pinning certificate of a specific server or private CA).
In the end, we found 15 false alarms due to (1), but did
not observe examples of (2). A typical example we observed
in app code is to perform hostname verification in other
places, for example, as a part of the custom implementation
of checkServerTrusted(), effectively verifying both the
certificate chain and hostname in that method. Another ex-
ample concerns the use of a different API method to enable
hostname verification. Since Android 7 (API level 24), the
setEndpointIdentificationAlgorithm() method [51]
was introduced in the SSLParameters class. One can use this
to set up an SSL socket with hostname verification enabled.

Pattern #11 – All IVs must come from SecureRandom, even
for decryption (CogniCryptSAST). This is an interesting
case of CogniCryptSAST ’s RequiredPredicateError, which detects
constant IVs and salts, among other misuses. The correspond-
ing whitelist rules for PBEKeySpec, PBEParameterSpec,
IvParameterSpec require the IVs and salts to be generated
from SecureRandom. While this might make sense for en-
cryption, it is obviously not possible for decryption to freshly
generate new random IVs. We observed at least 280 false
alarms because of this. Likewise, in AES-SIV, a synthetic IV is
meant to be generated from input instead of SecureRandom.
We observed at least 37 false alarms caused by this.

Pattern #12 – Legitimate origins of key materials prohibited

8

https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/rule/CustomTrustManagerFinder.java#L40
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/rule/CustomTrustManagerFinder.java#L40

(CogniCryptSAST). The rule SecretKeySpec.crysl used
by CogniCryptSAST has a predicate that requires the byte array
given to the constructor of SecretKeySpec to be obtained
from an existing Key or SecretKey object. This is an overly
restrictive whitelist rule, because it can be violated by loading
the bytes from a key file, or by generating a byte array
with SecureRandom. We also observed that libraries such as
Google Tink [52] define some custom classes for holding keys,
and constructing SecretKeySpec with byte arrays from them
also violates the whitelist rule. We observed 549 false alarms
of RequiredPredicateError due to this pattern.

Pattern #13 – Whitelist constraints ignore idiosyncrasies of
Android (CogniCryptSAST). CogniCryptSAST has a set of
rules designed for Java Cryptography Architecture (JCA), and
also uses it to analyze Android apps [2]. We found many
ITPs in Android apps due to the rule set not considering
idiosyncrasies of the Android API. For example, the whitelist
constraints for the KeyStore class omitted some common
key store names on Android, such as, AndroidKeyStore,
BKS, and AndroidCAStore. Such omissions caused 96.2%
(331/344) of the KeyStore constraint errors reported by
CogniCryptSAST to be ITPs. Similarly, the constraints for
TrustManagerFactory omitted a common factory name
on Android (i.e., X509), thus all 46 of the reported con-
straint errors for TrustManagerFactory are ITPs. Moreover,
PKCS7Padding is an alias of PKCS5Padding on Android,
but the former is excluded in the whitelist constraints for the
Cipher class, thus 20.9% (150/716) of all the ConstraintError
for Cipher are ITPs.

Another interesting example concerns the protocol string
given to SSLContext.getInstance(). CogniCryptSAST re-
quires the string to be either TLSv1.2 or TLSv1.3. Although
the intention of disabling older versions of TLS is under-
standable, however, based on the results of our experiments
(Table VIII in Appendix A-B), many other protocol strings
enable the same set of TLS versions. We found that 92.6%
(1704/1840) of all the ConstraintError reported for SSLContext
are ITPs because of this. To actually disable specific ver-
sions of TLS, the constraints should instead be imposed on
SSLSocket.setEnabledProtocols().

Additionally, we find that on Android, the init method
of both SSLContext and TrustManagerFactory can take
null parameters, in which case the call will fall back to
secure defaults supported by the platform, but nonetheless
trigger the RequiredPredicateError. This led to 720 ITPs for
TrustManagerFactory and 1130 ITPs for SSLContext.

Moreover, CogniCryptSAST requires passwords to never
take the String type, otherwise it reports the NeverTypeO-
fError. Likewise, some IncompleteOperationError rules are de-
signed to catch PBEKeySpec objects that do not call the
clearPassword() method. While these might be important
on conventional platforms to prevent password compromise
through memory dumping attacks, Android has application
sandbox [53] to isolate app resources such as memory. Thus, it
is not clear under which threat model would the 722 NeverType-
OfError alarms and the 69 PBEKeySpec IncompleteOperationError
due to not calling clearPassword() constitute misuses that
need to be fixed in Android apps.

Pattern #14 – Seeding with srandom not allowed (CryptoREX).

Rule 6 of CryptoREX uses the nm -D <filename> command
to check if rand and srand are both used by a binary. If not,
then it reports a violation, as calling rand without seeding
gives the same outputs. Interestingly, among the 22 binaries
sampled for rule 6, we found hostapd, wpa_supplicant,
and two closed-source binaries using srandom instead of
srand to seed the PRNG. CryptoREX reports them as misuses,
despite srandom being functionally equivalent to srand. After
modifying CryptoREX to consider srandom, the reported
number of rule 6 violations dropped from 133 to 116.

ID #6: Whitelists require careful curation to capture
common legitimate programming patterns. These patterns
can be discovered by mining and testing code repositories.
Also, due to the subtle differences between Android and
conventional Java, we advocate curating a whitelist tailor-
made for Android, instead of directly reusing the one for
conventional Java. When the whitelist only contains pat-
terns that capture sufficient conditions of non-vulnerability,
which can be learned from repository mining, false alarms
can be avoided without introducing false negatives. This ID
is generally applicable to any static or dynamic detectors.

VII. FALSE ALARMS DUE TO USAGE CONTEXTS

Now we discuss ITPs due to overly conservative misuse
rules. Despite the best intentions, some of the misuse rules also
do not capture sufficient conditions of vulnerabilities, resulting
in various false alarms.

Pattern #15 – All usage of AES-ECB considered insecure
(CryptoGuard, CogniCryptSAST , CryptoREX). For Crypto-
Guard’s rule 11, we found 57 alarms concern the use of
AES/ECB/NOPADDING. Upon closer inspection, 22 (38%) of
them are in fact ITPs. The reason is that AES-ECB can be
used as the raw AES block cipher for implementing other
secure modes of operation. This is often necessary because
the standard Java API does not have a separate method for
the raw AES block cipher. We observed this in one appli-
cation that uses AES-ECB to implement AES-OCB (2 false
alarms). Another application contains Google’s Tink library
[52], which uses AES-ECB to implement AES-EAX (3 false
alarms). In fact, this usage of AES-ECB was also detected and
reported by an industrial tool (CodeSafe from Qianxin), and
got dismissed by the Tink developers7. Additionally, we also
observed Bitcoin wallet implementations use AES-ECB as the
raw AES block cipher to implement the BIP38 [54] standard,
which is a method for encrypting Bitcoin private keys (17 false
alarms). We exchanged emails with a developer of the open-
source bitcoinj library, who opined that this usage is intentional
and not a vulnerability. CogniCryptSAST reports similar false
alarms, as it also detects all usages of AES-ECB.

Likewise, CryptoREX’s rule 1 also prohibits any use of
AES-ECB. Interestingly, it also considers any use of the raw
block cipher function AES_encrypt from OpenSSL to be
insecure. Out of its 566 rule 1 alarms, 140 are found to
be ITPs. An example can be found in a recent version of
hostap8, where the AES-ECB functions from the OpenSSL
EVP interface are mapped to its internal interface, which

7https://github.com/google/tink/issues/246
8https://w1.fi/cgit/hostap/tree/src/crypto/crypto openssl.c?h=hostap 2 10#n372

9

https://github.com/google/tink/issues/246
https://w1.fi/cgit/hostap/tree/src/crypto/crypto_openssl.c?h=hostap_2_10#n372

will be used to implement other AES modes. The raw block
cipher AES_encrypt is used by older versions of hostap9

for the same purpose, as well as in OpenSSH10, which uses
AES_encrypt to implement the UMAC algorithm [55].

Pattern #16 – All usages of non-CSPRNGs considered
vulnerabilities (CryptoGuard, CryptoREX). With a total of
9042 alarms, CryptoGuard’s rule 9, which detects any usage of
java.util.Random, has the highest number of alarms among
its 16 rules. Upon closer inspection, we found 2602 cases in the
top-10 offending methods to be ITPs. Cryptographically secure
pseudo-random number generators (CSPRNGs) are required
when implementing algorithms that expect both the uniformity
and unpredictability properties from the underlying PRNG.
However, non-CSPRNGs are often used where unpredictia-
bility is not needed. For instance, a top contributor of rule
9 alarms is the use of non-CSPRNG in the Explode transi-
tion (UI animation) on Android11. Another example include
picking a random track in a media player (e.g., ExoPlayer12).
Additionally, for some problems (e.g., finding square root
and verifying matrix multiplications), there is no efficient
deterministic algorithm known. Therefore, developers utilize
probabilistic algorithms to solve these problems. In many such
cases, unpredictability is not necessary, and the uniformity
of non-CSPRNGs suffices. For example, a non-CSPRNG can
be used in the Tonelli and Shanks (T&S) algorithm [56] for
finding the square root modulo p. Similarly, the uniformity
of non-CSPRNG is sufficient in solving quadratic equation in
F2n [57]. Both of these are prominent examples of false alarms
found in Bouncy Castle (and Spongy Castle) cryptographic
library, with 112 ITPs due to the T&S algorithm, and 246
ITPs due to solving quadratic equations in F2n .

Furthermore, we found apps written in Kotlin triggered
many rule 9 alarms. A closer examination revealed that this
is due to the implementations of certain Kotlin features either
map to or use the non-CSPRNG from Java. For instance, the
PlatformRandom.kt from the Kotlin standard library (stdlib)
maps Kotlin’s Random to Java’s java.util.Random. Thus,
any apps written in Kotlin that use the stdlib will be reported
by CryptoGuard to have rule 9 vulnerabilities.

CryptoREX’s rule 6 has similar problems, as the non-
CSPRNG function rand() can be used in diverse contexts,
many of which are unlikely to be vulnerabilities. For example,
in a closed-source binary funjsq_dl, rand() is used to
generate a random rollback time for different log files to avoid
too many simultaneous rollback operations. Through manual
sampling, we observed 272 false alarms due to rand() being
used in non-security-critical contexts, which could be grouped
into 4 high-level cases. Due to space constraints, we give a
more detailed account in Appendix A-E.

In contrast, CogniCryptSAST does not follow the same
approach of detecting all calls to non-CSPRNGs, and thus
avoided many false alarms. Instead, its whitelist rules focus
on specific scenarios where a CSPRNG might be needed.

9https://w1.fi/cgit/hostap/tree/src/crypto/crypto openssl.c?h=hostap 0 7 2#n226
10https://github.com/openssh/openssh-portable/blob/5796bf8c/umac.c#L165
11https://android.googlesource.com/platform/frameworks/base/+/master/core/java/

android/transition/Explode.java#150
12https://github.com/google/ExoPlayer/blob/03569f9e/library/core/src/main/java/com/

google/android/exoplayer2/trackselection/RandomTrackSelection.java

Pattern #17 – All http:// considered vulnerabilities
(CryptoGuard). CryptoGuard’s rule 7 catches URLs that start
with http://. While the motivation is clear, many resulting
alarms are difficult for developers to act upon. There are in
total 1645 alarms for rule 7, and the 610 alarms from the
top-10 contributing methods all appear to be ITPs, where the
URLs are constructed for local loopback (localhost), other
debugging purposes, or as placeholders. Prominent examples
of debug URLs can be found in the DevServerHelper
class of the React Native framework from Facebook, where
various methods construct URLs of the debug server (the
host machine of an Android emulator) with http:// for
debugging purposes, contributing 122 alarms. Additionally, we
found placeholder URLs such as http://undefined/ and
http://example.com/, which do not seem to be endpoints
of meaningful communication. In fact, across all the rule 7
alarms, the localhost case alone contributed 477 (29.0%)
alarms. It is not clear how an attacker can sniff such traffic
without first compromising the device, which is much stronger
than the typical threat model of a network MITM.

Pattern #18 – All usage of collision-prone hash functions
considered vulnerabilities (CryptoGuard). Rule 16 of Cryp-
toGuard catches the use of hash functions that are perceived
as weak. The use of collision-prone hash functions, however,
does not always constitute vulnerabilities, so long as the
usage scenario is not affected by potential collisions, or that
a collision resolution mechanism is already in place (e.g.,
separate chaining in a hash table). Through manual sampling,
we found 72 false alarms because of that. Specifically, the
Facebook library uses MD5 to hash files to be reported
in its error messages, which were identified as misuses in
31 apps. Similarly, some libraries also employ MD5 as a
checksum to detect unintentional corruption while fetching
an image (16 alarms), mp3 file (8 alarms) or general files (7
alarms). Additionally, another library utilizes MD5 digests as
the lookup index in a local cache, resulting in 10 alarms.

ID #7: AES-ECB, http://, non-CSPRNG, and collision-
prone hash functions have legitimate usages where they
provide sufficient guarantees and desirable performance.
We recommend detectors to target specific usages that
are indeed vulnerable under a well-defined threat model.
If concerns over non-CSPRNGs are mainly on key gen-
eration, then detectors should target keys that might
be generated by non-CSPRNGs. This is doable, as
shown by CogniCryptSAST . Likewise, SHA-1 is believed
to be second-preimage resistant despite not collision-
resistant [58], [59], which can still be used to build
other secure cryptographic constructs. For example, the
use of SHA-1 in hash-based message authentication code
(HMAC) continued to be approved by NIST in 2020
(Table 3 of [60]). If concerns over collision-prone hash
functions are mainly on their usage in digital signatures,
then detectors could target API methods for signing. This
principle of focusing more on sufficient conditions and
tightening the decision boundary can also apply to other
vulnerability detectors, dynamic or static.

13https://github.com/google/tink/blob/8f6316b9/java src/src/main/java/com/
google/crypto/tink/subtle/AesEaxJce.java#L103

10

https://w1.fi/cgit/hostap/tree/src/crypto/crypto_openssl.c?h=hostap_0_7_2#n226
https://github.com/openssh/openssh-portable/blob/5796bf8c/umac.c#L165
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/transition/Explode.java#150
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/transition/Explode.java#150
https://github.com/google/ExoPlayer/blob/03569f9e/library/core/src/main/java/com/google/android/exoplayer2/trackselection/RandomTrackSelection.java
https://github.com/google/ExoPlayer/blob/03569f9e/library/core/src/main/java/com/google/android/exoplayer2/trackselection/RandomTrackSelection.java
https://github.com/google/tink/blob/8f6316b9/java_src/src/main/java/com/google/crypto/tink/subtle/AesEaxJce.java#L103
https://github.com/google/tink/blob/8f6316b9/java_src/src/main/java/com/google/crypto/tink/subtle/AesEaxJce.java#L103

VIII. FALSE ALARMS DUE TO STANDARD MANDATES

We now discuss the ITPs caused by protocol standard
mandates. In our investigations of the corresponding standard
documents, we only consider keywords such as MUST and
SHALL [61] as mandatory. Other keywords such as SHOULD
and MAY are treated as options and are thus not used to
classify alarms as ITPs. We note that some of the mandated
usages might constitute more realistic threats than the others,
nevertheless, they help to explain why developers write and
keep code that looks like misuses in the apps and libraries.

Pattern #19 – Protocol standards mandate the use of weak
algorithms, modes, and constants. Another cause of ITPs
concerning CryptoGuard’s rule 1, 10–14, and 16, is that some
protocol standards actually require the use of algorithms,
modes, and constants that are perceived to be weak, and
thus even standard-compliant implementations will trigger the
alarms. We consider such alarms ineffectual, as the developers
(app or library) did not make a mistake or misuse on their
own, and they are not in a position to arbitrarily change the
design choices stipulated in protocol standards.

Examples of this are plentiful. For instance, DNSSEC
signers are not recommended to use SHA-1 in signing [62],
yet implementations must continue to support validation of
RSASHA1 signatures [62]. Because of this, we observed 30
ITPs for CryptoGuard’s rule 16 contributed by apps that
contain DNSSEC libraries such as org.minidns.dnssec
and org.xbill.dns. Likewise, to implement support for
Bitcoin Script [63], wallet apps have to use SHA-1, as it is
one of the opcodes. This led to 8 ITPs for CryptoGuard’s rule
16. Moreover, we found that AES/ECB/NOPADDING is also
needed for decrypting and validating the permission string in
encrypted Adobe PDF (Algorithm 3.13 of [13]). This led to 2
additional ITPs for CryptoGuard’s rule 11.

For CryptoGuard’s rule 13, Bouncy Castle (and Spongy
Castle) has code that does password-based encryption (PBE)
with iteration count set to one14, triggering 31 alarms. We
found that this is to support reading encrypted private keys
from the old OpenSSL format [64]. One might argue this
format should be designed better, but developers are not in
a position to unilaterally increase the iteration count on their
own, without breaking compatibility with this legacy format.

Some alarms of CryptoGuard’s rule 12 are also caused by
standard mandates. For example, we observed 32 ITPs from 3
apps that implement the Machine Readable Travel Documents
(MRTDs) standard [65], which includes a Password Authenti-
cated Connection Establishment (PACE) protocol. The PACE
definition requires a zero IV to be use with 3DES-CBC, and an
IV of -1 to be used with AES-CBC [65], which triggered the
false alarms. Similar problems also affect CryptoREX’s rule 2,
which detects constant IVs in CBC mode of block ciphers. An
example is the Apple Filing Protocol (AFP) [66]. AFP supports
several user authentication modules, one of which is called
DHX2. In DHX2, the IVs are defined as fixed values [67],
thus triggering 6 alarms of CryptoREX’s rule 2. In any case,
developers cannot unilaterally replace these constant IVs with
random numbers, otherwise interoperability will be broken.

14https://github.com/bcgit/bc-java/blob/40678655/pkix/src/main/java/org/
bouncycastle/openssl/jcajce/PEMUtilities.java#L326

Another large contributor to CryptoGuard’s rule 11, 14 and
16 alarms, is the Apache HttpClient library which implements
support for the New Technology LAN Manager (NTLM)
protocol suite [68], which uses MD5, RC4 and DES-ECB15,
and provides single sign-on (SSO) in Microsoft environments.
Overall, this contributes to 56 alarms of CryptoGuard’s rule
2, and 32.5% (233/716) of its rule 11 and 14 alarms16.
Likewise, for CryptoREX, NTLM also contributed 478 rule 1
alarms, due to its use of DES-ECB. Although the cryptographic
algorithms used in NTLM are known to be weak, they cannot
be unilaterally changed by developers. A more meaningful
but orthogonal discussion is whether the NTLM protocol suite
should be deprecated, though the exploitability of NTLM with
HTTP over TLS depends upon the threat model, and protocol
deprecation efforts require vendor buy-in and coordination,
which might explain why the likes of NTLM are kept in some
libraries for compatibility reasons.

ID #8: Developers are sometimes bound by standard
mandates to use certain algorithms and constants. As a
partial refinement, one can extract class/method names
known to be implementing such standards, and incorporate
them in a misuse alarm filter. If done at the level of targeting
specific classes/methods that implement known standards
(instead of whitelisting all usage of algorithms/constants
in an undiscriminating manner), this should not lead to
false negatives. Alternatively, detectors can also consider
reporting those classes/methods with a low-confidence label
(see ID #5). Protocol/standard mandates can be discovered
in a manner similar to repository mining (see ID #6), to
better understand why developers’ hands are tied. This ID
should be generally applicable to other misuse detectors.

IX. GENERALIZABILITY OF FALSE ALARM PATTERNS

While the false alarm patterns are distilled from three
academic static detectors, in this section, we demonstrate and
discuss their generalizability in other tools.

Due to the labor intensity of conducting root cause analysis
of false alarms, we evaluate one popular industrial tool, Spot-
Bugs [69] with the Find Security Bugs plugin (hereafter re-
ferred to as FindSecBugs, commit id 4760fea) [12], which is
open-source. FindSecBugs is an actively maintained industrial
tool, which also targets security bugs related to cryptographic
APIs, making it ideal for investigating the generalizability
of the false alarm patterns discussed in previous sections.
While FindSecBugs has a list of 141 bug patterns for security
weaknesses [70], for ease of comparison, we only consider
the ones that overlap with what we investigated in the three
academic detectors. The results are shown in Table VI.

Similar to CryptoGuard (Pattern #10), we found that Find-
SecBugs also does not capture sufficient or necessary condition
of vulnerability in its detection of insecure TrustManager and
HostnameVerifier. Specifically, FindSecBugs does not use
any data flow analysis to model the condition of return value
in the methods of TrustManager and HostnameVerifier.

15The use of ECB mode DES in NTLM was classified as functional false
positives by a previous work [34].

16In CryptoGuard, violations of rule 11 and 14 are reported together. Also,
CryptoGuard does not perform reachability analysis, thus support of NTLM
in a 3rd-party library does not imply the apps are indeed using NTLM.

11

https://github.com/bcgit/bc-java/blob/40678655/pkix/src/main/java/org/bouncycastle/openssl/jcajce/PEMUtilities.java#L326
https://github.com/bcgit/bc-java/blob/40678655/pkix/src/main/java/org/bouncycastle/openssl/jcajce/PEMUtilities.java#L326

Instead, the condition is whether the targeted method (e.g.,
verify()) is empty, which is checked by verifying that there
are no statements of invocation or field loading17. In this case,
a simple verify() method that always returns false, which
rejects any hostnames, would be identified as an insecure
implementation of HostnameVerifier.

Unsurprisingly, other rules in FindSecBugs, such as pro-
hibiting all ECB, SHA-1, and MD5, also do not consider any
contexts, akin to the three academic detectors we evaluated (see
Pattern #15, #18), and thus result in similar ITPs. However,
due to the absence of data flow analysis in FindSecBugs, none
of the false alarms on hard-coded keys and short cryptographic
keys discussed above are found in FindSecBugs.

An interesting surprise, however, is that FindSecBugs actu-
ally escapes the decryption context when detecting static IVs18,
which reduces false alarms. Although FindSecBugs does not
use data flow analysis to discover static IV values (and can thus
have false negatives), this approach of considering decryption
is in sharp contrast to the CogniCryptSAST model which
requires fresh random IVs in both encryption and decryption
(Pattern #11). This in turn shows the feasibility of ID #7.

TABLE VI. FALSE ALARMS PATTERNS IN FINDSECBUGS

Original
FindSecBugs
Patterns [70]

How is the pattern being modeled? False
Alarm

Patterns
TrustManager that
accept any certifi-
cates

report bug when there are no statements
of invocation or field loading in the meth-
ods checkClientTrusted(), checkServerTrusted() or
getAcceptedIssuers() of a class implementing
X509TrustManager.

Pattern #10
applies

HostnameVerifier
that accept any
signed certificates

report bug when there are no statements of invo-
cation or field loading in the method verify() of a
class implementing HostnameVerifier.

Pattern #10
applies

SHA-1 is a weak
hash function

report any MessageDigest.getInstance("SHA-1"); Pattern #18
applies

MD5 are weak
hash functions

report any MessageDigest.getInstance("MD5"); Pattern #18
applies

Weak SSLContext report any SSLContext.getInstance("SSL"); Pattern #13
applies

DES is insecure report any Cipher.getInstance("DES/..."); Pattern #19
applies

DESede is inse-
cure

report any Cipher.getInstance("DESede/..."); Pattern #19
applies

Hard-coded key mark constant values as hardcoded in a method
and report bug when methods PBEKeySpec or
SecretKeySpec initialized using the marked values.

/

Static IV report static IV when there is no Cipher.getIV(),
no SecureRandom.nextBytes(), and the cipher mode
is not decryption in a method initializing
IvParameterSpec.

Avoided
Pattern #11

ECB mode is inse-
cure

report any Cipher.getInstance("AES/ECB/NoPadding"); Pattern #15
applies

RSA usage with
short key

report any constant key_size < 2048 in
KeyPairGenerator.initialize(key_size)

/

Furthermore, we looked into a recent work, Crylogger [7],
a dynamic detector that analyzes execution logs collected in
an instrumented environment. Running it through the same
F-Droid app dataset, we noticed that the problem of not
distinguishing decryption from encryption (Pattern #11) also
applies to Crylogger’s rule 5 and 7, which shows that this
is indeed a rule modeling problem not limited only to static
analysis. On the other hand, Crylogger avoids the AES-EAX
false alarms (Pattern #15) because it checks the number of

17https://github.com/find-sec-bugs/find-sec-bugs/blob/3dd2f25/findsecbugs-plugin/
src/main/java/com/h3xstream/findsecbugs/crypto/WeakTrustManagerDetector.java

18https://github.com/find-sec-bugs/find-sec-bugs/blob/3dd2f25/findsecbugs-plugin/
src/main/java/com/h3xstream/findsecbugs/crypto/StaticIvDetector.java

encryption blocks, which can be seen as an example of the
refinement proposed in ID #7. We note that there are additional
false alarms from Crylogger due to how it detects predictable
keys, for which we give a detailed account in Appendix A-F.

Finally, some of the false alarm patterns discussed in
Sections VII and VIII likely also apply to other academic
and industry detectors. A recent work that uses a hybrid
approach to find vulnerabilities in binaries [71] also detects
any constant seeds used in PRNG regardless of context, and
we conjecture that some legitimate usages are also reported
as vulnerabilities. Likewise, some overly conservative rules
discussed in Section VII are also enforced by a recent work [9].

X. DISCUSSIONS

Threats to validity. We acknowledge our manual sampling is
a best-effort investigation, and a different group of researchers
might not arrive at the exact same labeling as ours. As such,
in this paper, we focus mostly on the false alarm patterns
with root causes that tend to be stable and reproducible (e.g.,
erroneous data flows, narrow whitelists, legitimate usages, and
standard mandates), and put less emphasis on the overall
percentage of false alarms in the entire data set. Given the lack
of a false alarm oracle (or a detector with perfect precision
and recall), we consider this an acceptable compromise in
exploring the nuances of cryptographic misuses.

False negatives. While sampling misuse reports, we also
observed some interesting false negative patterns. An obvious
example is CryptoGuard’s rule 5-1 discussed in Pattern #10.
Additionally, we found that the functionality of its rule 5-
2 also becomes ineffective due to a bug in string matching
the slicing criteria. The slicing algorithm for rule 5 uses
the String.startsWith() method to decide whether it
met a statement that matches the slicing criteria. It works
correctly when the slicing criteria are throw in rule 5-1
or return in rule 5-3. However, for the slicing criteria
checkValidity() in rule 5-2, it can never be matched by
String.startsWith() because the Jimple IR code19 does
not start with the slicing criteria. Thus, rule 5-2 actually never
gets enforced, leading to false negatives.

Another bug we found in CryptoGuard while investigating
false alarm Pattern #2 is that the variable names in Jimple
IR are assumed to always contain only a single digit, since
CryptoGuard’s extraction of fields uses substring(3)20.
However, when the variable name contains two digits (e.g.,
r10.<class field>), the field slicing will also fail, which
could in turn lead to false negatives.

Another interesting false negative is that CryptoGuard only
raises alarms for key sizes of even number21. Thus, one can
use RSA with a short key size in odd number (e.g., 1023-bit,
which is functional in practice) without triggering alarms.

Finally, since static detectors heavily rely on matching class
names when applying various rules, one can potentially evade

19virtualinvoke $r3.<java.security.cert.X509Certificate:
void checkValidity()>()

20https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/
slicer/backward/method/MethodInstructionSlicer.java#L203

21https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/rule/
ExportGradeKeyInitializationFinder.java#L208

12

https://github.com/find-sec-bugs/find-sec-bugs/blob/3dd2f25/findsecbugs-plugin/src/main/java/com/h3xstream/findsecbugs/crypto/WeakTrustManagerDetector.java
https://github.com/find-sec-bugs/find-sec-bugs/blob/3dd2f25/findsecbugs-plugin/src/main/java/com/h3xstream/findsecbugs/crypto/WeakTrustManagerDetector.java
https://github.com/find-sec-bugs/find-sec-bugs/blob/3dd2f25/findsecbugs-plugin/src/main/java/com/h3xstream/findsecbugs/crypto/StaticIvDetector.java
https://github.com/find-sec-bugs/find-sec-bugs/blob/3dd2f25/findsecbugs-plugin/src/main/java/com/h3xstream/findsecbugs/crypto/StaticIvDetector.java
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/backward/method/MethodInstructionSlicer.java#L203
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/slicer/backward/method/MethodInstructionSlicer.java#L203
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/rule/ExportGradeKeyInitializationFinder.java#L208
https://github.com/CryptoGuardOSS/cryptoguard/blob/92551eeb/src/main/java/rule/ExportGradeKeyInitializationFinder.java#L208

detection by using custom wrapper classes that extends the
standard classes without overriding any methods. This can be
seen as a dual of the false alarms caused by the custom key
classes of Google Tink discussed in Pattern #12.

Usability. In addition to the precision problem, root cause
analysis is another major usability challenge, which can also
render misuse alarms less actionable to developers. In our
investigation, we often encounter cases where the offending
method reported is not where the perceived misuse actually
happened. Consider a simple example where method a() has
a constant string x, which is then passed to method b(), and
eventually passed to method c(), where it is used as a secret
key. In many cases, the detectors would report either c()
or a() as the sole offending method of having a constant
key of x. However, when only c() is reported, it becomes
difficult to identify and fix the root cause (i.e., go modify a()
to replace the constant key). Often times we find ourselves
searching for x in a code base with grep, and if x is a common
constant, it becomes difficult to pinpoint a(). Conversely,
when only a() is reported, it is easy to locate x, but it
becomes difficult to comprehend where x is used and what
are the impacts. Likewise in CogniCryptSAST , the required
and ensured predicates can propagate across many different
classes, triggering a chain of errors being reported. We find it
challenging sometimes to pinpoint the offending source behind
the first violated predicate, which is needed to understand and
fix a reported misuse. Based on this experience, we conjecture
that the root cause analysis can be made easier if the detectors
can also output (or even visualize) the data flows found in the
underlying static analysis. This information should already be
available in the detectors. Being able to see how the data flows
(and predicates) propagate can also help in deciding whether
a misuse report is a false alarm or not.

XI. LESSONS AND RECOMMENDATIONS

Lessons learned. Despite the best intentions of helping devel-
opers, many alarms reported by the detectors do not seem to
be actual misuses or vulnerabilities. Thus, when measuring the
security of apps (and firmware), these detectors must be used
with care. This in turn suggests that the problem of precisely
reporting cryptographic misuses is yet to be completely solved.

Although academic tool are not expected to be perfect,
the false alarms discussed in Sections V and VI suggest the
small-scale inspections performed by the corresponding papers
are inadequate in validating the correctness of the detectors.
Specifically, CryptoGuard manually inspected 1295 alarms in
Apache projects but none in Android apps. CogniCryptSAST

manually inspected 50 (out of 10000) Android apps, but
did not investigate any RequiredPredicateError (which
includes the fresh random IV alarms discussed in Pattern #11).
CryptoREX manually checked 30 (out of 679) alarms. To some
extent, those papers were victims of their own success, in
the sense that static analysis enables a scalable scanning of
many applications, resulting in a large number of alarms that
disincentivizes a thorough manual inspection.

On the other hand, the patterns discussed in Sections VII
and VIII show that there are many subtle nuances in defining
what constitutes a cryptographic misuse. Some API methods
that are perceived to be weak might have many legitimate

usages, and thus outright prohibiting them do not always lead
to meaningful findings for developers. As such, it might not
be the most constructive approach to report all those alarms
as misuses or vulnerabilities.

Assumptions are important. At the end of the day, many of
the false alarms are caused by assumptions that might not hold
in reality. This includes assumptions on what are the correct
ways of writing code for a specific task (which affects the
whitelist approach), as well as assumptions on where and how
will a certain function be used (which affects the blacklist
approach). Going forward, large-scale measurement studies of
code repositories might help to justify the assumptions taken
by the misuse detectors. For instance, if functions like AES-
ECB are overwhelmingly used in vulnerable manners rather
than in legitimate contexts such as implementing other secure
modes of AES, then it makes sense to blacklist all usages of
AES-ECB. Likewise, the whitelisting approach can also benefit
from the common programming patterns and practices revealed
by measurement studies of code repositories.

Recommendations for future work. In terms of design, we
recommend future work to focus on targeting and modeling
sufficient conditions of vulnerabilities. As discussed in Pat-
tern #16, the CogniCryptSAST approach of focusing on spe-
cific scenarios that require CSPRNGs avoids many false alarms
and certainly has merits. This design philosophy should be
applied to other rules and their models as well. Furthermore, it
would also help to have a more fine-grained set of API models.
Despite their similarity, the APIs of Android and conventional
Java have subtle but non-negligible differences that warrant
careful considerations and refinements. For Android apps, one
can further refine the API models based on the target API
version, which is available to detectors in the app manifest
file. The app manifest has already been used by other analysis
(e.g., [72]), and was used by CryptoGuard in its post-static-
analysis origin attribution [1].

For evaluation, we recommend future work to first test
their detectors on open-source data sets, which improves the
explainability of misuse alarms. Furthermore, we recommend
addressing evaluation blind-spots at two different levels. To
test for problems in rule modeling and implementation (cf.
Sections V and VI), we recommend grouping the offending
methods per misuse rule (see Section IV for details), and then
evaluate the security threats induced by the top-10 offending
methods under a well-defined threat model. In our experience,
this gives good coverage and helps to uncover many false
alarms due to rule modeling or bugs. To identify problems
in high-level misuse rules, it might be better to enlist the
help of independent third parties, otherwise the original rule
designer might not see problems in the misuse rules. One way
is to contact the corresponding app or library developers and
seek their opinions on the resulting misuse alarms, similar
to what was done in [27]. Increased contact with human
stakeholders (developers), however, might require additional
ethical considerations and procedures to avoid causing harms
(e.g., confusing developers into patching non-bugs).

XII. CONCLUSION

In this paper, we revisit the problem of using static analysis
to detect cryptographic API misuse. Our empirical evaluation

13

shows that many false alarms exist. We further dissect the
root causes of false alarms, which include overly conservative
rules and models, as well as bugs in detectors. We present a
more nuanced view of what constitute a misuse, and discuss
improvement directions for making misuse detectors more
precise and usable for developers. To facilitate future research
on this topic, we publicly released all our artifacts.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and shepherd for
helping us improve our paper. This work was supported in part
by a grant from the Research Grants Council (RGC) of Hong
Kong (Project No.: CUHK 24205021), and various grants from
CUHK and its Department of Information Engineering.

REFERENCES

[1] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. Yao, “Cryptoguard: High precision detection
of cryptographic vulnerabilities in massive-sized java projects,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 2455–2472.

[2] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “Crysl: An
extensible approach to validating the correct usage of cryptographic
apis,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp.
2382–2400, 2019.

[3] L. Zhang, J. Chen, W. Diao, S. Guo, J. Weng, and K. Zhang,
“{CryptoREX}: Large-scale analysis of cryptographic misuse in {IoT}
devices,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019, pp. 151–164.

[4] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in android applications,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security, 2013, pp. 73–84.

[5] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler et al., “Cognicrypt: Supporting
developers in using cryptography,” in 2017 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2017, pp. 931–936.

[6] A.-K. Wickert, L. Baumgärtner, F. Breitfelder, and M. Mezini, “Python
crypto misuses in the wild,” in Proceedings of the 15th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), 2021, pp. 1–6.

[7] L. Piccolboni, G. Di Guglielmo, L. P. Carloni, and S. Sethumadhavan,
“Crylogger: Detecting crypto misuses dynamically,” in IEEE Sympo-
sium on Security and Privacy (SP), 2021, pp. 1972–1989.

[8] A. S. Ami, N. Cooper, K. Kafle, K. Moran, D. Poshyvanyk, and
A. Nadkarni, “Why crypto-detectors fail: A systematic evaluation of
cryptographic misuse detection techniques,” in 2022 IEEE Symposium
on Security and Privacy (SP). IEEE, 2022, pp. 614–631.

[9] S. Rahaman, H. Cai, O. Chowdhury, and D. Yao, “From theory to code:
Identifying logical flaws in cryptographic implementations in c/c++,”
IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 6, pp. 3790–3803, 2021.

[10] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 35th
International Conference on Software Engineering (ICSE). IEEE,
2013, pp. 672–681.

[11] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[12] “The SpotBugs plugin for security audits of Java web applications
and Android applications.” Jun. 2023. [Online]. Available: https:
//github.com/find-sec-bugs/find-sec-bugs

[13] Adobe Acrobat SDK version 9.0, “Adobe Supplement to the ISO
32000,” 2008, https://web.archive.org/web/20200621050243/https:
//www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/adobe
supplement iso32000.pdf.

[14] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why eve and mallory love android: An analysis of android
ssl (in) security,” in Proceedings of the 2012 ACM conference on
Computer and communications security, 2012, pp. 50–61.

[15] A. Desnos, “Androguard: Reverse engineering, malware and goodware
analysis of android applications,” Jan. 2020. [Online]. Available:
https://github.com/androguard/androguard

[16] S. Afrose, S. Rahaman, and D. Yao, “Cryptoapi-bench: A compre-
hensive benchmark on java cryptographic api misuses,” in 2019 IEEE
Cybersecurity Development (SecDev). IEEE, 2019, pp. 49–61.

[17] M. Schlichtig, A.-K. Wickert, S. Krüger, E. Bodden, and M. Mezini,
“Cambench–cryptographic api misuse detection tool benchmark suite,”
arXiv preprint arXiv:2204.06447, 2022.

[18] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 2123–2138.

[19] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
2014, pp. 263–274.

[20] N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper, and
M. Wright, “Sok: A critical evaluation of efficient website fingerprinting
defenses,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2022, pp. 344–361.

[21] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnera-
ble does not imply exploited,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1325–1341.

[22] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,”
in Proceedings of the ACM/IEEE 42nd International conference on
software engineering, 2020, pp. 530–541.

[23] L. Luo, E. Bodden, and J. Späth, “A qualitative analysis of android taint-
analysis results,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2019, pp. 102–114.

[24] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
systematic evaluation of static api-misuse detectors,” IEEE Transactions
on Software Engineering, vol. 45, no. 12, pp. 1170–1188, 2018.

[25] S. Lipp, S. Banescu, and A. Pretschner, “An empirical study on the
effectiveness of static c code analyzers for vulnerability detection,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’22), July 18–22, 2022, Virtual,
South Korea, 2022.

[26] A.-K. Wickert, L. Baumgärtner, M. Schlichtig, K. Narasimhan, and
M. Mezini, “To fix or not to fix: A critical study of crypto-misuses
in the wild,” in IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), 2022.

[27] Y. Zhang, M. M. A. Kabir, Y. Xiao, D. D. Yao, and N. Meng,
“Automatic detection of java cryptographic api misuses: Are we there
yet,” IEEE Transactions on Software Engineering, 2022.

[28] “Soot - a java optimization framework,” Jul. 2022. [Online]. Available:
https://github.com/soot-oss/soot

[29] J. Späth, K. Ali, and E. Bodden, “Ide al: Efficient and precise alias-
aware dataflow analysis,” Proceedings of the ACM on Programming
Languages, vol. 1, no. OOPSLA, pp. 1–27, 2017.

[30] R. E. Strom and S. Yemini, “Typestate: A programming language
concept for enhancing software reliability,” IEEE Transactions on
Software Engineering, no. 1, pp. 157–171, 1986.

[31] J. Späth, K. Ali, and E. Bodden, “Context-, flow-, and field-sensitive
data-flow analysis using synchronized pushdown systems,” Proceedings
of the ACM on Programming Languages, vol. 3, no. POPL, pp. 1–29,
2019.

[32] “F-droid: Free and open source android app repository,” Jul. 2022.
[Online]. Available: https://f-droid.org/

[33] R. B. Evans and A. Savoia, “Differential testing: a new approach to
change detection,” in The 6th Joint Meeting on European software
engineering conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering: Companion Papers, 2007, pp.
549–552.

[34] I. Muslukhov, Y. Boshmaf, and K. Beznosov, “Source attribution of
cryptographic api misuse in android applications,” in Proceedings of the

14

https://github.com/find-sec-bugs/find-sec-bugs
https://github.com/find-sec-bugs/find-sec-bugs
https://web.archive.org/web/20200621050243/https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/adobe_supplement_iso32000.pdf
https://web.archive.org/web/20200621050243/https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/adobe_supplement_iso32000.pdf
https://web.archive.org/web/20200621050243/https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/adobe_supplement_iso32000.pdf
https://github.com/androguard/androguard
https://github.com/soot-oss/soot
https://f-droid.org/

2018 on Asia Conference on Computer and Communications Security,
2018, pp. 133–146.

[35] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value
numbers and redundant computations,” in Proceedings of the 15th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, 1988, pp. 12–27.

[36] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san, “Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[37] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[38] D. F. Bacon and P. F. Sweeney, “Fast static analysis of c++ virtual
function calls,” in Proceedings of the 11th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
1996, pp. 324–341.

[39] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin, “Practical virtual method call resolution for
java,” ACM SIGPLAN Notices, vol. 35, no. 10, pp. 264–280, 2000.

[40] M. Reif, F. Kübler, M. Eichberg, D. Helm, and M. Mezini, “Judge:
Identifying, understanding, and evaluating sources of unsoundness in
call graphs,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 251–261.

[41] NIST, “Announcement of proposal to revise nist sp 800-132,
recommendation for password-based key derivation: Part 1: Storage
applications,” 2023. [Online]. Available: https://csrc.nist.gov/News/
2023/proposal-to-revise-nist-sp-800-132-pbkdf

[42] K. Moriarty (Ed.), B. Kaliski, and A. Rusch, “PKCS #5:
Password-Based Cryptography Specification Version 2.1,” RFC 8018
(Informational), RFC Editor, Fremont, CA, USA, Jan. 2017. [Online].
Available: https://www.rfc-editor.org/rfc/rfc8018.txt

[43] E. Barker, “NIST Special Publication 800-57 Part 1 Revision 5 Rec-
ommendation for Key Management: Part 1 – General,” https://www.
keylength.com/en/4.

[44] “SecureRandom (Java Platform SE 8),” https://docs.oracle.com/javase/
8/docs/api/java/security/SecureRandom.html.

[45] “SecureRandom — Android Developers,” https://developer.android.
com/reference/java/security/SecureRandom.html.

[46] “Java Cryptography Architecture Oracle Providers Documentation,”
https://docs.oracle.com/javase/8/docs/technotes/guides/security/
SunProviders.html#SecureRandomImp.

[47] “Android Developers Blog: Using Cryptography to Store Cre-
dentials Safely,” https://android-developers.googleblog.com/2013/02/
using-cryptography-to-store-credentials.html.

[48] “Android Developers Blog: Some SecureRandom
Thoughts,” https://android-developers.googleblog.com/2013/08/
some-securerandom-thoughts.html.

[49] “Android Developers Blog: Security ”Crypto” provider deprecated
in Android N,” https://android-developers.googleblog.com/2016/06/
security-crypto-provider-deprecated-in.html.

[50] “⟨uses-sdk⟩ — Android Developers,” https://developer.android.com/
guide/topics/manifest/uses-sdk-element.

[51] “SSLParameters — Android Developers,” Nov. 2022. [On-
line]. Available: https://developer.android.com/reference/javax/net/ssl/
SSLParameters#setEndpointIdentificationAlgorithm(java.lang.String)

[52] “Google tink library that provides cryptographic apis,” Jul. 2022.
[Online]. Available: https://github.com/google/tink

[53] “Application sandbox in android,” Jul. 2022. [Online]. Available:
https://source.android.com/docs/security/app-sandbox

[54] “Bip38 for bitcoin,” Jul. 2022. [Online]. Available: https://en.bitcoin.
it/wiki/BIP 0038

[55] T. Krovetz (Ed.), “UMAC: Message Authentication Code using
Universal Hashing,” RFC 4418 (Informational), RFC Editor, Fremont,
CA, USA, Mar. 2006. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc4418.txt

[56] H. Cohen, A Course in Computational Algebraic Number
Theory, ser. Graduate Texts in Mathematics. Springer Berlin

Heidelberg, vol. 138. [Online]. Available: http://link.springer.com/10.
1007/978-3-662-02945-9

[57] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryp-
tography, ser. London Mathematical Society Lecture Note Series.
Cambridge university press, no. 265.

[58] NIST, SHA-3 standard: Permutation-based hash and extendable-output
functions. FIPS 202, 2015, http://dx.doi.org/10.6028/NIST.FIPS.202.

[59] D. Boneh and V. Shoup, A graduate course in applied cryptography,
2023.

[60] NIST, Recommendation for Key Management: Part 1 – General. NIST
Special Publication 800-57 Part 1 Revision 5, 2020, https://doi.org/10.
6028/NIST.SP.800-57pt1r5.

[61] S. Bradner, “Rfc2119: Key words for use in rfcs to indicate
requirement levels,” 1997. [Online]. Available: https://www.rfc-editor.
org/rfc/rfc2119

[62] P. Wouters and O. Sury, “Algorithm Implementation Requirements
and Usage Guidance for DNSSEC,” RFC 8624 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Jun. 2019. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8624.txt

[63] “Bitcoin script system for transactions,” Nov. 2022. [Online]. Available:
https://en.bitcoin.it/wiki/Script

[64] “/docs/manmaster/man3/PEM read PrivateKey.html,” 2022,
https://www.openssl.org/docs/manmaster/man3/PEM read PrivateKey.
html#PEM-ENCRYPTION-FORMAT.

[65] International Civil Aviation Organization, “Doc 9303 Machine Readable
Travel Documents Eighth Edition Part 11: Security Mechanisms for
MRTDs,” 2021.

[66] “Apple Filing Protocol Concepts,” 2012. [Online].
Available: https://developer.apple.com/library/archive/documentation/
Networking/Conceptual/AFP/Concepts/Concepts.html

[67] “AFP File Server Security,” 2012. [Online].
Available: https://developer.apple.com/library/archive/documentation/
Networking/Conceptual/AFP/AFPSecurity/AFPSecurity.html

[68] “Ntlm support in apache httpclient library,” Jul. 2022. [Online].
Available: https://hc.apache.org/httpcomponents-client-4.5.x/ntlm.html

[69] “SpotBugs: A tool for static analysis to look for bugs in Java code.”
Oct. 2023. [Online]. Available: https://spotbugs.github.io/index.html

[70] “The list of bug patterns with descriptions in Find Security Bugs.”
Jun. 2023. [Online]. Available: https://find-sec-bugs.github.io/bugs.htm

[71] J. Vadayath, M. Eckert, K. Zeng, N. Weideman, G. P. Menon, Y. Fratan-
tonio, D. Balzarotti, A. Doupé, T. Bao, R. Wang et al., “Arbiter:
Bridging the static and dynamic divide in vulnerability discovery on
binary programs,” 2022.

[72] M. Oltrogge, N. Huaman, S. Amft, Y. Acar, M. Backes, and S. Fahl,
“Why eve and mallory still love android: Revisiting tls (in) security in
android applications.” in USENIX Security Symposium, 2021.

[73] “Samba - opening windows to a wider world,” Nov. 2022. [Online].
Available: https://www.samba.org/

[74] “avahi - mDNS/DNS-SD,” Nov. 2022. [Online]. Available: https:
//www.avahi.org/

[75] “Linux WPA/WPA2/IEEE 802.1X Supplicant,” Nov. 2022. [Online].
Available: https://w1.fi/wpa supplicant/

[76] “OpenL2TP - Advanced crypto casino systems,” Nov. 2022. [Online].
Available: https://openl2tp.org/

[77] “winbindd — Name Service Switch daemon for resolving names from
NT servers,” Nov. 2022. [Online]. Available: https://www.samba.org/
samba/docs/current/man-html/winbindd.8.html

[78] “RAND seed,” Nov. 2022. [Online]. Available: https://www.openssl.
org/docs/man3.0/man3/RAND seed.html

[79] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al.,
Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom
number generators for cryptographic applications. National Institute
of Standards & Technology, 2010.

15

https://csrc.nist.gov/News/2023/proposal-to-revise-nist-sp-800-132-pbkdf
https://csrc.nist.gov/News/2023/proposal-to-revise-nist-sp-800-132-pbkdf
https://www.rfc-editor.org/rfc/rfc8018.txt
https://www.keylength.com/en/4
https://www.keylength.com/en/4
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://developer.android.com/reference/java/security/SecureRandom.html
https://developer.android.com/reference/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SecureRandomImp
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SecureRandomImp
https://android-developers.googleblog.com/2013/02/using-cryptography-to-store-credentials.html
https://android-developers.googleblog.com/2013/02/using-cryptography-to-store-credentials.html
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
https://android-developers.googleblog.com/2016/06/security-crypto-provider-deprecated-in.html
https://android-developers.googleblog.com/2016/06/security-crypto-provider-deprecated-in.html
https://developer.android.com/guide/topics/manifest/uses-sdk-element
https://developer.android.com/guide/topics/manifest/uses-sdk-element
https://developer.android.com/reference/javax/net/ssl/SSLParameters#setEndpointIdentificationAlgorithm(java.lang.String)
https://developer.android.com/reference/javax/net/ssl/SSLParameters#setEndpointIdentificationAlgorithm(java.lang.String)
https://github.com/google/tink
https://source.android.com/docs/security/app-sandbox
https://en.bitcoin.it/wiki/BIP_0038
https://en.bitcoin.it/wiki/BIP_0038
https://www.rfc-editor.org/rfc/rfc4418.txt
https://www.rfc-editor.org/rfc/rfc4418.txt
http://link.springer.com/10.1007/978-3-662-02945-9
http://link.springer.com/10.1007/978-3-662-02945-9
http://dx.doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8624.txt
https://en.bitcoin.it/wiki/Script
https://www.openssl.org/docs/manmaster/man3/PEM_read_PrivateKey.html#PEM-ENCRYPTION-FORMAT
https://www.openssl.org/docs/manmaster/man3/PEM_read_PrivateKey.html#PEM-ENCRYPTION-FORMAT
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/Concepts/Concepts.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/AFPSecurity/AFPSecurity.html
https://developer.apple.com/library/archive/documentation/Networking/Conceptual/AFP/AFPSecurity/AFPSecurity.html
https://hc.apache.org/httpcomponents-client-4.5.x/ntlm.html
https://spotbugs.github.io/index.html
https://find-sec-bugs.github.io/bugs.htm
https://www.samba.org/
https://www.avahi.org/
https://www.avahi.org/
https://w1.fi/wpa_supplicant/
https://openl2tp.org/
https://www.samba.org/samba/docs/current/man-html/winbindd.8.html
https://www.samba.org/samba/docs/current/man-html/winbindd.8.html
https://www.openssl.org/docs/man3.0/man3/RAND_seed.html
https://www.openssl.org/docs/man3.0/man3/RAND_seed.html

APPENDIX A

A. Misuses reported and sampled

Table VII shows the overview of the total number of
misuses and methods reported, as well as the coverage of our
sampling effort for each detector. A long tail can be seen by
comparing the misuses reported and the offending methods.
This is often due to the use of lesser known libraries, or
obfuscation of app code, which breaks the method grouping.

TABLE VII. MISUSES AND METHODS REPORTED AND SAMPLED

Rule Reported
Misuses

Sampled
(percentage)

Offending
Methods

Sampled
(percentage)

CryptoGuard

1,2 972 29.0% 190 6.8%
3 364 51.1% 105 9.5%
4 322 57.8% 121 13.2%
5 948 26.4% 463 2.2%
6 151 60.9% 57 19.3%
7 1645 41.2% 683 2.2%
8 105 88.6% 20 50.0%
9 9042 38.0% 3088 1.2%

10 150 53.3% 24 41.7%
11,14 716 54.5% 266 15.8%

12 490 24.3% 61 16.4%
13 1510 34.4% 86 14.0%
15 30 100.0% 11 100.0%
16 5804 42.8% 1249 1.9%

CogniCryptSAST

Cipher 4457 7.9% 1317 1.3%
MessageDigest 5031 24.1% 1790 0.6%
SecretKeySpec 2216 10.3% 1037 1.0%
PBEKeySpec 302 37.1% 74 13.5%

KeyPairGenerator 814 17.4% 357 2.8%
PBEParameterSpec 28 60.7% 16 62.5%

IvParameterSpec 861 26.5% 414 2.4%
SecureRandom 629 38.5% 135 7.4%

KeyStore 769 23.9% 362 2.8%
SSLContext 5164 39.3% 825 1.2%

TrustManagerFactory 1209 59.6% 327 3.1%

CryptoREX

1 623 100.0% 23 100.0%
2 7 100.0% 3 100.0%
3 68 100.0% 8 100.0%
4 172 100.0% 10 100.0%
5 6 100.0% 1 100.0%
6 1045 70.1% 145 20.0%

B. Protocol strings and TLS versions

Table VIII shows the actual TLS versions that are enabled
on Android, when the code provides different protocol strings
to the SSLContext.getInstance() method.

C. CogniCryptSAST bug in detecting hard-coded arrays

1 /∗∗∗
2 ∗ Function that finds the values assigned to a soot array.

3 ∗ @param callSite call site at which sootValue is involved

4 ∗ @param allocSite allocation site at which sootValue is

involved

5 ∗ @param arrayLocal soot array local variable for which values

are to be found

6 ∗ @return extracted array values

7 ∗/
8 protected Map<String, CallSiteWithExtractedValue>

extractSootArray(CallSiteWithParamIndex callSite,

ExtractedValue allocSite){
9 Value arrayLocal = allocSite.getValue();

10 Body methodBody = allocSite.stmt().getMethod().getActiveBody()

;

TABLE VIII. TLS VERSIONS AND PROTOCOL REQUESTED

Protocol requested via
SSLContext.getInstance()

Android version Available protocols

TLS

Android 10 - 13
(level 29 - 33)

TLSv1.3
TLSv1.2
TLSv1.1
TLSv1

Android 6 - 9
(level 23 - 28)

TLSv1.2
TLSv1.1
TLSv1

Android 5
(level 21 - 22)

TLSv1.2
TLSv1.1
TLSv1
SSLv3

Android 4
(level 15 - 19)

TLSv1
SSLv3

SSL

Android 10 - 13
(level 29 - 33)

TLSv1.3
TLSv1.2
TLSv1.1
TLSv1

Android 8 - 9
(level 26 - 28)

TLSv1.2
TLSv1.1
TLSv1

Android 5 - 7
(level 21 - 25)

TLSv1.2
TLSv1.1
TLSv1
SSLv3

Android 4
(level 15 - 19)

TLSv1
SSLv3

TLSv1

Android 6 - 13
(level 23 - 33)

TLSv1.2
TLSv1.1
TLSv1

Android 5
(level 21 - 22)

TLSv1.2
TLSv1.1
TLSv1
SSLv3

Android 4
(level 15 - 19)

TLSv1
SSLv3

TLSv1.2

Android 6 - 13
(level 23 - 33)

TLSv1.2
TLSv1.1
TLSv1

Android 5
(level 21 - 22)

TLSv1.2
TLSv1.1
TLSv1
SSLv3

Android 4
(level 16 - 19)

TLSv1
SSLv3

TLSv1.3 Android 10 - 13
(level 29 - 33)

TLSv1.3
TLSv1.2
TLSv1.1
TLSv1

11 Map<String, CallSiteWithExtractedValue> arrVal = Maps.

newHashMap();

12 if (methodBody != null) {
13 Iterator<Unit> unitIterator = methodBody.getUnits().

snapshotIterator();

14 while (unitIterator.hasNext()) {
15 final Unit unit = unitIterator.next();

16 if (unit instanceof AssignStmt) {
17 AssignStmt uStmt = (AssignStmt) (unit);

18 Value leftValue = uStmt.getLeftOp();

19 Value rightValue = uStmt.getRightOp();

20 if (leftValue.toString().contains(arrayLocal.toString()

) && !rightValue.toString().contains("newarray"))

{
21 arrVal.put(retrieveConstantFromValue(rightValue), new

CallSiteWithExtractedValue(callSite, allocSite

));

22 }
23 }
24 }
25 }
26 return arrVal;

27

28 /∗∗∗
29 ∗ Function that decides if an array is hardcoded.

30 ∗/
31 private boolean isHardCodedArray(Map<String,

CallSiteWithExtractedValue> extractSootArray) {
32 return !(extractSootArray.keySet().size() == 1 &&

extractSootArray.containsKey(""));

33 }
34 }

Listing 7. Source code for deciding hard-coded array in CogniCryptSAST

16

The main bug can be found in line 9 of Listing 7: the
method getValue() of the allocSite variable returns to
arrayLocal the right-hand-side (RHS) value of an allocation
site. However, it should actually return the left-hand-side
(LHS) value of an allocation site. As an example, consider an
allocSite of local array r1 = newarray (char)[]. The
RHS value of it (newarray (char)[]) cannot match any
variable names in the subsequent matching operation on line
20. arrayLocal should instead take r1 as its value so that
the matching operation in line 20 would be feasible. Due to
this bug, the extractSootArray() method always returns an
empty Map. Then the isHardCodedArray() method always
returns true due to a zero sized key set in the empty Map.

D. Example of statically resolvable polymorphism

In Listing 8, there are two classes that imple-
ment the Hasher interface: the DoUpdateHasher class
and the NoUpdateHasher class. In MainActivity, a
DoUpdateHasher object is fed into the HasherWrapper
(line 36). The DoUpdateHasher object indeed invokes the
MessageDigest.update() method and returns the hash
value of “data”. However, due to the interface class as pa-
rameter type in HasherWrapper.getHash(Hasher hash),
CogniCryptSAST regards the parameter type as Hasher and
considers all classes that implement this interface to be
possible during inter-procedural analysis, without using the
static type information from MainActivity. As the re-
sult, CogniCryptSAST will report a TypestateError for the
MessageDigest object, which is an FP.

1 public interface Hasher { // interface defintion

2 void updateData(MessageDigest mD) throws Exception;

3 }
4

5 public class DoUpdateHasher implements Hasher {
6 private String data = "data";

7 @Override

8 public void updateData(MessageDigest mD) throws Exception {
9 byte[] data = this.data.getBytes("UTF−8");

10 mD.update(data);

11 }
12 }
13

14 public class NoUpdateHasher implements Hasher {
15 @Override

16 public void updateData(MessageDigest mD) throws Exception

17 { /∗ do nothing ∗/ }
18 }
19

20 public class HasherWrapper {
21 public byte[] getHash(Hasher hash) throws Exception {
22 byte[] hashdata = new byte[] {};
23 MessageDigest mD = MessageDigest.getInstance("SHA−256");
24 hash.updateData(mD);

25 hashdata = mD.digest();

26 return hashdata;

27 }
28 }
29

30 public class MainActivity extends AppCompatActivity {
31 @Override

32 protected void onCreate(Bundle savedInstanceState) {
33 ...

34 DoUpdateHasher doUpdateHasher = new DoUpdateHasher();

35 HasherWrapper hasherWrapper = new HasherWrapper();

36 hasherWrapper.getHash(doUpdateHasher);

37 }
38 }

Listing 8. FP case of polymorphism in CogniCryptSAST

E. Non-cryptographic usage of PRNG in firmware

For CryptoREX’s rule 6 alarms, we specifically investi-
gated 22 binaries which covers 24 alarms. We found that 13
alarms are actually ITPs due to usage of rand() in non-
security-critical contexts. Here are the 4 high-level cases:

(i) rand() used to implement a cache mechanism. (5/13)
In a modified version of Samba [73] that is used by multi-
ple Netgear firmware images, the function rand() is used
to implement a simple cache mechanism. We suppose the
Samba in Netgear firmware was modified by vendor as we
cannot find the corresponding source code on Samba’s GitHub
repository, so we relied on the Netgear GPL Open Source Code
repository22 to retrieve the source code of the firmware, and
we attach the relevant code as an example in Listing 9. The
function first tries to retrieve the corresponding passwd* from
the buffer pwnam_cache. If the desired passwd* is not cached
in the buffer, it then calls the function sys_getpwnam()
(equivalent to getpwnam()) and tries to find an unused part
of the buffer to cache this. If the buffer has no room for the
new passwd* to be cached, function rand is called to select
a random cached entry to discard. In this case, whether the
generated random number is predictable does not matter much.

1 static struct passwd ∗∗pwnam_cache = NULL;

2 ...

3 struct passwd ∗getpwnam_alloc(TALLOC_CTX ∗mem_ctx,
4 const char ∗name) {
5 int i;

6 struct passwd ∗temp;
7 init_pwnam_cache();

8 for (i=0; i<PWNAMCACHE_SIZE; i++) {
9 if ((pwnam_cache[i] != NULL) &&

10 (strcmp(name, pwnam_cache[i]−>pw_name) == 0)) {
11 DEBUG(10, ("Got %s from pwnam_cachen", name));

12 return talloc_reference(mem_ctx, pwnam_cache[i]);

13 }
14 }
15 temp = sys_getpwnam(name);

16 if (!temp) {
17 return NULL;

18 }
19 for (i=0; i<PWNAMCACHE_SIZE; i++) {
20 if (pwnam_cache[i] == NULL)

21 break;

22 }
23 if (i == PWNAMCACHE_SIZE)

24 i = rand() % PWNAMCACHE_SIZE;

25 if (pwnam_cache[i] != NULL) {
26 TALLOC_FREE(pwnam_cache[i]);

27 }
28 pwnam_cache[i] = tcopy_passwd(pwnam_cache, temp);

29 if (pwnam_cache[i]!= NULL && mem_ctx != NULL) {
30 return talloc_reference(mem_ctx, pwnam_cache[i]);

31 }
32 return tcopy_passwd(NULL, pwnam_cache[i]);

33 }

Listing 9. An ITP example of Rule 6-2 (no seed) from Samba

(ii) rand() used to generate random time interval. (5/13) In
Samba [73], avahi [74], wpa supplicant [75], OpenL2TP [76],
and two closed-source binaries, rand() is called to generate
a random delay for various purposes. For example, in function
winbind_named_pipe_sock() of libwbclient.so.0, a
shared library wrapper around winbindd [77] requests, rand()
is called to generate a random delay between 1 second and 3

22https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL

17

https://kb.netgear.com/2649/NETGEAR-Open-Source-Code-for-Programmers-GPL

seconds when receiving EAGAIN (try again) response from a
non-blocking socket.

(iii) rand() used to generate service cookie. (1/13) In avahi-
core, rand() is used to generate different service cookies,
which are used to distinguish different services with the same
names created by avahi-publish. The usage of rand() in this
situation appears non-security-critical.

(iv) rand() is called but the generated number does not
have any actual effects. (2/13) In a closed-source binary
netgear ntp, rand() is called but its return value is not used.
In another closed-source binary email, the return value rand()
is used to add entropy to OpenSSL’s PRNG. According to the
official OpenSSL’s documentation [78], manual (re-)seeding
the default OpenSSL random generator is not necessary (but
allowed), thus we consider it an ITP.

F. NIST SP 800-22 Statistical Test misuse in Crylogger

Crylogger’s rule 6 and 8 detect “badly derived” keys
and IVs respectively. For that, Crylogger logs all the values
generated by Util.Random and SecureRandom as well as
all the key materials and IV values. If any of the key or
IV values came from Util.Random, they are reported as
insecure. Otherwise, if they came from SecureRandom, they
are considered secure. For keys and IVs that are not from
either of those two PRNGs (e.g., loaded from a key store or
generated by other PRNGs), Crylogger will then put them to
the NIST SP 800-22 statistical test to see if they are “badly
derived” or not.

Several problems exist in the design and implementation of
this detection. First, to determine whether keys and IVs came
from Util.Random or SecureRandom, Crylogger requires an
exact match of the entire string. In other words, it assumes
that for each invocation of the PRNG, all outputs will be used
as one key or IV. However, this assumption does not always
hold in practice. In our experiments, we observed that Google
Tink’s implementation of AES-SIV first generates a 64-byte
key, which is then split into two 32-byte sub-keys, one for
CTR mode encryption, one for its CMAC23. Because of this,
Crylogger will fail to recognize that the CTR key came from
SecureRandom, thus putting it into the NIST SP 800-22 test.

The NIST SP 800-22 test is a suite of 15 statistical tests
meant to test whether a binary sequence appear random. For
these tests to deliver meaningful results, there are 3 critical
criteria: (1) there are enough runs, (2) for each run, there are
long enough input bits, and (3) each run of each test tests the
same PRNG. Interestingly, Crylogger breaks all 3 criteria.

First, we observed that although Crylogger separately tests
the randomness of keys and IVs, when Crylogger aggregates
inputs to NIST SP 800-22, it disregards the originating PRNGs.
That is, for keys (and separately, IVs) that Crylogger deems
necessary to test, it aggregates all of them as inputs to one run
of NIST SP 800-22, even if they were generated by different
PRNGs. As the result of which, it is not clear how should
one interpret the end results of NIST SP 800-22, as multiple
PRNGs could have contributed to one input binary sequence.

23https://github.com/google/tink/blob/ca852750/java src/src/main/java/com/
google/crypto/tink/subtle/AesSiv.java#L53C3-L62C4

Second, in our experiments, we found that 4 of the 15 NIST
SP 800-22 tests always fail. Upon a closer look, we noticed
those 4 tests require a large number of input bits (ranging
from 104 to 106 bits). This is due to the fact that those tests
use the Central Limit Theorem to approximate the asymptotic
distribution of the binary stream, so these tests are not valid
when inputs are too short. According to the NIST SP 800-22
document [79], each test has a minimum requirement on its
input size. We found that the Python library of NIST SP 800-
22 used by Crylogger returns a failure for a particular test if
the input size is less than its minimum requirement. However,
since Crylogger considers keys (and IVs) to be badly derived
when any one of the 15 tests failed24, false alarms can easily
happen due to the log file collected by Crylogger having not
enough bits of keys (and IVs). In order to satisfy the 106 bits
input size requirement, one execution of an app would need
to have more than 7810 distinct 128-bit AES keys that are
not directly from Util.Random and SecureRandom. Thus,
securely derived keys that were loaded from key store are often
reported as insecure by Crylogger. And together with its exact
match heuristics, the Google Tink implementation of AES-SIV,
despite generating keys from SecureRandom25, was reported
as insecure by Crylogger.

Moreover, statistical tests themselves can also have false
positives, and it is recommended to run the NIST SP 800-
22 test suite multiple times in order to achieve statistical
significance. As an experiment, we collected 1000 sufficiently
long sequences from SecureRandom for 1000 runs of NIST
SP 800-22. Using the original C implementation of SP 800-
22 from NIST, we found that out of the 1000 runs, the
Discrete Fourier Transform (Spectral) Test failed for 18 runs,
and the Frequency (Monobit) Test failed for 8 runs. This
highlights the fact that a single run of NIST SP 800-22 cannot
directly distinguish a CSPRNG from a non-CSPRNG. Thus,
by requiring a PRNG to always not fail any single run of NIST
SP 800-22, Crylogger puts an unnecessarily high expectation
on the PRNG. In general, one would usually first fix the
acceptable probability α (also known as the significance level)
of getting a false positive (the case where the test says the data
is non-random when the data is actually random). In other
words, one expects even a (truly) random sequence would
fail the test with probability α. Then, when the same test is
run for n times for a particular PRNG, if the proportion of
sequences that did not fail the statistical test falls outside of

the confidence interval (1 − α ± 3
√

α(1−α)
n , computed with

the normal approximation of the binomial distribution), then
one can say with (1 − α) certainty that the PRNG failed
the statistical test. For instance, when α = 0.01, n = 1000,
confidence interval = 0.99± 0.0094392.

Finally, we note that in April 2022, NIST decided to revise
NIST SP 800-22 Rev. 1a26. In particular, it will clarify the
purpose of the SP 800-22 test suite, and reject its use for
assessing cryptographic random number generators. Future
detectors should thus avoid using NIST SP 800-22 as the basis
of deciding whether keys and IVs are bad.

24The original Crylogger paper acknowledges the possibilities of skipping
some tests due to insufficient input bits, but the tool does not implement it.

25https://github.com/google/tink/blob/8f6316b9/java src/src/main/java/com/
google/crypto/tink/internal/Random.java#L26

26https://csrc.nist.gov/news/2022/decision-to-revise-nist-sp-800-22-rev-1a

18

https://github.com/google/tink/blob/ca852750/java_src/src/main/java/com/google/crypto/tink/subtle/AesSiv.java#L53C3-L62C4
https://github.com/google/tink/blob/ca852750/java_src/src/main/java/com/google/crypto/tink/subtle/AesSiv.java#L53C3-L62C4
https://github.com/google/tink/blob/8f6316b9/java_src/src/main/java/com/google/crypto/tink/internal/Random.java#L26
https://github.com/google/tink/blob/8f6316b9/java_src/src/main/java/com/google/crypto/tink/internal/Random.java#L26
https://csrc.nist.gov/news/2022/decision-to-revise-nist-sp-800-22-rev-1a

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

Our artifacts contain all reported alarms from evaluated
detectors, analysis results of labeled alarms, and refined Cryp-
toGuard as well as false positive examples.

1) How to access: The DOI link is https://doi.org/10.5281/
zenodo.10158303. Our artifacts are hosted at https://github.
com/kynehc/crypto-detector-evaluation-artifacts.

2) Hardware dependencies: Our experiments of evaluating
detectors were ran on a server machine with two 10-core
Intel(R) Xeon(R) Silver 4210R CPUs @ 2.40GHz, with a total
of 256 GB of RAM.

The detectors have a time-out mechanism. Thus, the total
number of alarms emitted by a detector on unfinished apps
might vary depending on the hardware performance.

3) Software dependencies: All software dependencies are
listed in our artifact’s readme files.

4) Benchmarks: None.

B. Artifact Installation & Configuration

Our artifacts contain the instructions to prepare the envi-
ronment for the evaluation.

C. Major Claims

• (C1): We analyzed sampled false alarms from evalu-
ated detectors, and show various false alarm patterns
exist. This is validated by the experiment (E1).

• (C2): We implemented this refinement in Crypto-
Guard, rerun it on the app data set, and found a large
number of FPs for rules 1– 3, 8, 10, 12–13 because
of Pattern #1, as shown in Table IV. This is validated
by the experiment (E2).

D. Evaluation

1) Experiment (E1): Our readme file in artifacts lists the
labeled alarms and corresponding analysis results that manifest
various false alarm patterns.

2) Experiment (E2): To validate the functionality of the
refined CryptoGuard in reducing false positives caused by
Pattern #1, we provide a scaled-down version of the experiment
we conducted on refined CryptoGuard. Our artifacts include
detailed instructions on the experiment.

E. Notes

The claims about Crylogger were added during paper
revision, and thus they were not covered by the the artifacts we
submitted to artifact evaluation. Additionally, due to copyright
issues, we cannot provide licenses or copes of IDA Pro to
reproduce the experiments on CryptoREX.

19

https://doi.org/10.5281/zenodo.10158303
https://doi.org/10.5281/zenodo.10158303
https://github.com/kynehc/crypto-detector-evaluation-artifacts
https://github.com/kynehc/crypto-detector-evaluation-artifacts

	Introduction
	Related Work
	Overview of the detectors
	methodology
	False positives from static analysis
	False alarms due to modeling
	False alarms due to usage contexts
	False alarms due to standard mandates
	Generalizability of false alarm patterns
	Discussions
	Lessons and Recommendations
	Conclusion
	References
	Appendix A
	Misuses reported and sampled
	Protocol strings and TLS versions
	CogniCryptSAST bug in detecting hard-coded arrays
	Example of statically resolvable polymorphism
	Non-cryptographic usage of PRNG in firmware
	NIST SP 800-22 Statistical Test misuse in Crylogger

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)

	Notes

